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1 ILLUSTRATION OF HYPERGRAPH DEFINITIONS

In Figure S1, we illustrate some of the hypergraph concepts introduced in Section 2.1.

2 LABELLED VERSION OF FIGURE 2B

In Figure 2B in the main text, we did not label individual curves. In Figure S2 we split the curves from
Figure 2B into 3 different panels and provide curve labels. We use a different naming convention here
than we did for 3-patterns in the rest of the manuscript. We do so because the other (less complicated)
notation could uniquely describe 1- 2- and 3-patterns, but cannot uniquely map all 4-patterns. The naming
convention is described in the caption of Figure S2.

3 PROOF OF THEOREM 2.4

PROOF. Without loss of generality, let us focus on the pure pattern consisting only of k-node hyperedges.
Let us denote the prevalence of this pattern P (Xk). By Eq. (1), the analytical formula for P (Xk) is,

P (Xk) = p
(mk )
k

m∏
i=k+1

(1− pi)(
m
i ). (S1)

According to Lemma 2.11, for any ε > 0 and large enough N , we can choose a p such that all factors in
this product are arbitrarily large. All other patterns will either have factors of (1 − pk) in the analytical
expression, or factors of pl in the expression, where l ≥ k + 1. By Lemma 2.11, N can be chosen large
enough to make any such factors arbitrarily close to 0 if 0 < pk < 1. This proves the theorem.
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Figure S1. Illustration of some concepts introduced in Section 2.1. A 5-node hypergraph. B Induced
subhypergraph of (A) on the 4 left-most nodes. (C) Maximal induced subhypergraph of (A) on 4 left-most
nodes. D A 4-pattern. (C) happens to be an instance of this 4-pattern in the hypergraph in (A). Labelling
nodes {0, 1, 2, 3} starting with the label 0 in the top-left corner and increasing labels by 1 in the clockwise
direction, (C) and (D) are also examples of two different labelled 4-patterns.
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Figure S2. Labelled version of Figure 2B split into 3 panels to make plot colors easier to distinguish. The
naming convention used for 4-patterns is different than that used for 3-patterns in the rest of the manuscript.
The pattern 1ABCDEF has A 3-node hyperedges filled and B not filled, C 2-node hyperedges filled and
D not filled, E 1-node hyperedges filled and F not filled. The pattern 1000000 is the 4-pattern consisting of
a single 4-node hyperedge. There are 2 possible 4-patterns with the name 1044200 (consisting of 4 2-node
hyperedges and all other possible hyperedges missing): one where the hyperedges form a loop and another
where they do not. The analytical solutions are not plotted in this figure.

4 PROOF OF LEMMA 2.14

PROOF. By Lemma 2.11, if pk > 1
2 , N can be chosen large enough to make the value of pl arbitrarily

close to 1 for l ≤ k − 1. The prevalence of the pure pattern with k-node hyperedges is

P (Xk) = p
(mk )
k Ω, (S2)

where Ω =
∏m

i=k+1(1− pi)(
m
i ). The prevalence of the non-pure patterns containing xk k-node and xk−1

(k − 1)-node hyperedges is,

P (X ′k−1,k) = p
xk−1

k−1 p
xk
k (1− pk)(

m
k )−xkΩ. (S3)

By Lemma 2.11, for any ε > 0 and large enough N , the first factor in this last expression can get arbitrarily
close to 1. In this limit, the pure and non-pure patterns therefore cross when the remaining factors in
Eqs. (S2) and (S3) are equal. This happens at when pk = (1− pk); in other words, pk = 1

2 . For any pk > 1
2 ,

pk > (1− pk). Comparing Eqs. (S2) and (S3), the pure pattern dominates in this case.
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Figure S3. Frequency of labelledm-patterns in theG(m)(N, p) model with pure k-node hyperedge patterns
in colors. Each datapoint plots the average prevalence of a labelled m-pattern in 10 simulations of the
model for the given p value and m = 4, N = 100. Vertical gray dashed lines indicate values pf p where
pk = 1/2 for 1 ≤ k ≤ 4. As argued in the proof of Theorem 2.18, many prevalence curves cross at these
values of p.

5 PROOF OF LEMMA 2.15

PROOF. By Lemma 2.11, if pk+1 is non-zero, we can choose N large enough pl → 1 as N →∞ for
l ≤ k − 1. The prevalence of the pure pattern with k-node hyperedges is

P (Xk) = p
(mk )
k (1− pk+1)

( m
k+1)Ω′, (S4)

where Ω′ =
∏m

i=k+2(1− pi)(
m
i ). The prevalence of the non-pure patterns containing xk k-node and xk+1

(k + 1)-node hyperedges is,

P (X ′k−1,k) = pxkk p
xk+1

k+1 (1− pk+1)
( m
k+1)−xk+1Ω′. (S5)

By Lemma 2.11, for any ε > 0 and large enough N , the first factor in both Eqs (S4) and (S5) can get
arbitrarily close to 1. Hence, the pure and non-pure patterns above cross when the remaining factors are
equal in Eqs (S4) and (S5). This happens when pk+1 = 1

2 . For lower values of pk+1, (1− pk+1) > pk+1.
This proves the lemma.

6 ILLUSTRATION FROM PROOF OF THEOREM 2.18

In the proof of Theorem 2.18, we apply Lemma 2.17. This Lemma states that many prevalence curves cross
at values of p where pk = 1/2. In Figure S3, we confirm this by simulations of the G(m)(N, p) model.

Frontiers 3



Supplementary Material

7 PROOF OF THEOREM 2.19

PROOF. Let us refer to the patterns as XA and XB . The prevalence of the patterns can be written down
explicitly,

P (XA) = γAp
x
(A)
k−1

k−1 p
xk
k (1− pk)(

m
k )−xkΩ, (S6)

P (XB) = γBp
x
(B)
k−1

k−1 p
xk
k (1− pk)(

m
k )−xkΩ, (S7)

where Ω =
∏m

i=k+1(1− pi)(
m
i ) and x(L)j is the number of j-node hyperedges in XL. By Lemma 2.11, N

can be chosen large enough to make the pk−1 factor arbitrarily close to 1 for both P (XA) and P (XB).
Hence, for increasing N ,

P (XA)

P (XB)
→ γA

γB
. (S8)

We conclude that the pattern with the smallest combinatorial factor is bound to be less prevalent than the
other pattern.
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