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[bookmark: OLE_LINK4]Activation functions of the Ih and the inhibitory synapse
[bookmark: OLE_LINK19]To clearly study the roles of the Isyn and Ih in the antiphase bursting, the activation functions of the two currents are shown in supplementary Fig. 1. The green curve represents the activation curve of the Ih, i.e.,  with θh = −0.04 V. The lower the membrane voltage V is, the larger the  is, showing the hyperpolarization characteristic of the Ih. The blue and red curves (Fig. 6) represent the activation curves of the inhibitory synapse  for Vth = −0.047 V and Vth = −0.04 V, respectively. At a same membrane potential V, the lower the Vth is, the larger the  is, and the larger the corresponding inhibitory synaptic current is. 
[image: fig6]
[bookmark: OLE_LINK12][bookmark: OLE_LINK2][bookmark: OLE_LINK5][bookmark: OLE_LINK7]Supplementary Figure 1. Activation curves of the Ih (green) and Isyn (blue and red for Vth = 0.047 V and 0.04 V, respectively). 
[bookmark: _Hlk155129655]Opposite changes of the bursting period for the escape mode and release mode
[bookmark: OLE_LINK24][bookmark: OLE_LINK23]For Vth = −0.047 V (escape mode), the period of antiphase bursting decreases with the increase of gh. The bursting period is 32.64, 16.14, and 8.72 s for gh = 5, 8, and 12 nS, respectively, as illustrated in supplementary Fig. 2(a). On the contrary, for Vth = −0.04 V (release mode), the period increases with the increase of gh. The bursting period is 4.00, 7.78, and 10.61 s for gh = 6, 10, and 20 nS, respectively, as shown in supplementary Fig. 2(b). It shows that the change of the bursting period is different for the escape mode and release mode. With increasing gh, the bursting period decreases for a lower Vth (escape mode) and increases for a higher Vth (release mode). For Vth = −0.047 V, the period decreases for gsyn = 12 (black), 15 (red), and 18 nS (green), as depicted in supplementary Fig. 2(c). For Vth = −0.040 V, the period increases for gsyn = 10 (black), 15 (red), and 20 nS (green), as illustrated in supplementary Fig. 2(d). The results are consistent with the experimental results in Refs [34, 45].
[image: fig4]
[bookmark: OLE_LINK9][bookmark: OLE_LINK1][bookmark: OLE_LINK3][bookmark: _Hlk155128563][bookmark: _Hlk155696466]Supplementary Figure 2. Changes of the period of the antiphase bursting for different Vth values.  (a) Vth = 0.047 V and gsyn = 15 nS. Upper, middle, and lower panels represent gh = 5, 8, and 12 nS, respectively; (b) Vth = 0.04 V and gsyn = 15 nS. Upper, middle, and lower panels denote gh = 6, 10, and gh = 20 nS. gsyn = 15 nS; (c) Vth = 0.047 V. Changes with respect to gh for gsyn = 12 (black), 15 (red), and 18 (green) nS; (d) Vth = 0.040 V. Changes with respect to gh for gsyn = 10 (black), 15 (red), and 20 (green) nS.
Changes of burst for different gh value in release mode
[bookmark: OLE_LINK20][bookmark: _Hlk155707278][bookmark: _GoBack]The results mentioned in subsection 3.2.3 can also be illustrated by the changes of the burst for gh = 10 nS (olive) and gh = 20 nS (pink) in supplementary Fig. 3, with the termination points of the burst plotted at a same time. Obviously, for a larger gh, the time duration of the valley voltage of the burst V1 higher than the threshold (dashed horizontal line) becomes longer, appearing at the beginning part of the burst, which is induced by the stronger Ih,1 depicted in the middle panel of supplementary Fig. 3 and the weaker Isyn,1 illustrated in the bottom panel of supplementary Fig. 3. These results present a more detailed co-regulation process of the Isyn and Ih for the release mode of antiphase bursting[34]. 
[image: S3]
[bookmark: OLE_LINK22]Supplementary Figure 3. Changes of burst for gh = 10 nS (olive) and gh = 20 nS (pink) with the termination points of the burst plotted at a same time. The panels from top to bottom are membrane potential, Ih current, and inhibitory synaptic current for neuron 1. Other parameters: gsyn = 15 nS, Vth = 0.04 V.
Spiking of isolated neuron is related to the stable limit cycle 
[bookmark: OLE_LINK21][bookmark: OLE_LINK14][bookmark: OLE_LINK8][bookmark: OLE_LINK15]Supplementary Fig. 4(a), (b), (c), and (d) show the bifurcations of the fast subsystem and trajectory of the spiking for gh = 5, 8, 10, and 20 nS, respectively. In each panel, the unstable equilibrium point (horizontal dashed black line) changes to a stable one (solid red line) via a subcritical Hopf (subH) bifurcation. Meanwhile, an unstable limit cycle (blue curves) emerges, contacting with a stable one (green curves) to form a saddle node bifurcation of the limit cycles (SNLC). The solid black vertical curves represent the phase trajectory of spiking of the single neuron for Ipol = 0.01 nA. The bifurcation points appear at different locations in different panels. Obviously, in each panel, the spiking (vertical black line) runs along the stable limit cycle and is not related to the stable focus. The insert panel in each panel shows the enlargement of the spiking along mh direction.
[image: S4]
[bookmark: OLE_LINK13][bookmark: OLE_LINK16][bookmark: OLE_LINK6][bookmark: OLE_LINK31][bookmark: OLE_LINK11][bookmark: OLE_LINK10]Supplementary Figure 4. Bifurcations of the fast subsystem and phase trajectory of the spiking of a single neuron. (a) gh = 5 nS; (b) gh = 8 nS; (c) gh = 10 nS; (d) gh = 20 nS. Horizontal dashed black curve and solid red curve represent the unstable and stable equilibrium points, respectively, blue and green curves represent the unstable and stable limit cycles, respectively, solid black vertical curve denotes the phase trajectory of the spiking for Ipol = 0.01 nA. The insert is a partial amplification of the spiking along mh direction.
Two-parameter bifurcations 
Supplementary Fig. 5(a) and (b) show the two-parameter (Ipol and mh) bifurcations of the fast subsystem. The green, blue, and red curves represent the saddle-node bifurcation of the limit cycle (SNLC), Hopf bifurcation of the equilibrium point, and saddle-node bifurcation on an invariant circle (SNIC), respectively. Supplementary Fig. 5(b) shows the results of supplementary Fig. 5(a) for mh > 0. With the increase of Ipol or mh, the SNIC bifurcation, Hopf bifurcation, and SNLC bifurcation appear. 
[image: S5]
[bookmark: OLE_LINK17]Supplementary Figure 5. Bifurcations of the fast subsystem for gh = 5 nS. (a) Two-parameter (Ipol, mh) bifurcations; (b) Local enlargement of panel (a). Horizontal and vertical dashed lines represent mh = 0.5 and Ipol = 0.11 nA, respectively; (c) Bifurcations with respect to Ipol at mh = 0.5; (d) Bifurcation with respect to mh at Ipol = 0.11 nA. 
The bifurcations with respect to Ipol at mh = 0.5 and with respect to mh at Ipol = −0.11 nA are illustrated in supplementary Fig. 5(c) and (d), respectively. The red solid curve and black dashed curve represent the stable and unstable equilibrium points, respectively. The green and blue curves denote the stable and unstable limit cycles, respectively. With increasing Ipol or mh, the stable equilibrium point and the unstable equilibrium point collide to form the SNIC bifurcation and meanwhile the stable limit cycle appears. For the relatively high membrane voltage, the unstable equilibrium transits to the stable equilibrium point via the subcritical Hopf (subH) bifurcation point, and an unstable limit cycle (blue curve) appears. The unstable and stable limit cycle collide to form the SNLC bifurcation. 
Difference between the stable equilibrium point of the fast subsystem of a single neuron and the unstable equilibrium point of the fast subsystem of the coupled neurons 
[bookmark: _Hlk155646844][bookmark: _Hlk156412280]For Vth = 0.040 V and gh = 10 nS, the bifurcations of the fast subsystem of a single neuron and the coupled neurons are compared, as shown in supplementary Fig. 6, with the solid black curve to represent the phase trajectory of the bursting. The solid pink curve and dashed orange curves represent the stable and unstable equilibrium points of the fast subsystem of a single neuron model, respectively. The solid red curves and dashed black curves denote the stable and unstable equilibrium points of the fast subsystem of the coupled neuron model, respectively. The equilibrium points of the two fast subsystems are significantly different, since the two fast subsystems are different. The fast subsystem of the coupled neurons contains the inhibitory coupling current with oscillations, while the fast subsystem of a single neuron contains a constant current to simulate the coupling current. Then, the silence phase of the bursting runs along the equilibrium point of the coupled system.
[image: fig15]
[bookmark: OLE_LINK18]Supplementary Figure 6. Bifurcations related to silence phase of the fast subsystem of the coupled neurons (solid red curve and dashed black curves) and a single neuron (solid pink curve and dashed orange curves), plotted with the phase trajectory of the antiphase bursting (black solid curve). Coupled neurons: Vth = 0.04 V, gsyn = 15 nS, gh = 10 nS, and Ipol = 0.01 nA. Single neuron: gh = 10 nS and Ipol = 0.122 nA. 
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