
Supplementary Methods

2.3.3 Correction for vertical and horizontal eye positions

2.3.3.1 Correction for vertical eye position

Correction for vertical eye position acquired from a 10° horizontally oblique camera (vertical eye
camera) was performed using the following analysis method: The vertical eye position (Supplementary
Figure 1, orange cone) determined by LABVIEW software (National Instruments, USA) from the
camera with a 10° optical axis is a projection of the actual vertical eye position (Supplementary Figure
1, blue cone) that traces a circular path (Supplementary Figure 1, white circle) onto an ellipse
(Supplementary Figure 1, yellow ellipse) in a plane orthogonal to the camera’s optical axis. The ellipse
had a horizontal (short) axis/vertical (long) axis ratio of cos10°. The distorted vertical eye position 𝜃
(Supplementary Figure 1, orange cone) from the camera can be corrected to the actual vertical eye
position 𝜃′ (Supplementary Figure 1, blue cone) using the function 𝜃! = 	tan"#(tan𝜃 cos10°)⁄ , where
𝜃 is the eye position determined by LABVIEW from the camera image relative to where the null
position is set to 0°.

2.3.3.2 Correction for horizontal eye position

The slight tilt of the horizontal eye camera (the camera atop the aquarium) away from the z-axis may
project a vertical component of eye movement onto the horizontal eye camera, potentially
contaminating the eye position data. When the camera’s optical axis tilts by the angle α, on the sagittal
plane, the actual vertical eye position (Supplementary Figure 2A, blue cone) on the circular trace
(Supplementary Figure 2A, white circle) is projected onto the ellipse (Supplementary Figure 2A,
yellow ellipse) in the plane orthogonal to the optical axis (Supplementary Figure 2A, yellow ellipse),
resulting in contamination of the horizontal eye position data (Supplementary Figure 2A, orange cone).
The ellipse has a vertical (short) or horizontal (long) axis ratio of sinα. The contamination effects are
usually minimal but significant when the vertical component largely dominates the horizontal
component (e.g., during the Roll-Tilt Test). To correct for this, we estimated the pure contamination
𝜃!!	due to the vertical component (Supplementary Figure 2I) using the function 𝜃!! = tan"#(sinα ×
tan𝜃!) and subtracted it from the horizontal eye position data determined by LABVIEW from the eye
camera (Supplementary Figure 2C) to obtain the corrected horizontal component (Supplementary
Figure 2K), where 𝜃!	is the actual vertical eye position estimated by the aforementioned method and α
is the tilt angle of the horizontal eye camera estimated by the following method.

2.3.3.3 Estimation of the tilt angle of the horizontal eye camera

The angle α, representing the tilt angle of the optical axis of the horizontal eye camera, was determined
as follows (Supplementary Figure 2B–H). We assumed that only saccades and post-saccadic drift
caused horizontal eye movements during the roll-tilt test paradigm before training. To identify saccades
and high-frequency noise, a custom-made automatic saccade-detection algorithm was applied to
approximate the post-saccade drift by connecting a linear line between the end of the saccade and the
beginning of the next saccade. The estimated pure horizontal eye position traces (saccades and post-
saccadic drifts) and high-frequency noise (Supplementary Figure 2C) were subtracted from the

Supplementary Material

2

horizontal eye position trace determined by LABVIEW using the horizontal eye camera
(Supplementary Figure 2D), leaving a residual trace interpreted as pure contamination.

The angle α in the function 𝜃!! = tan"#(sin𝛼 × tan𝜃!) was estimated using curve fitting with
MATLAB (MathWorks, USA) ‘fit’ and ‘fittype’ functions (Supplementary Figure 2H). Here, 𝜃′
represents the actual vertical eye position estimated using the previously mentioned method, averaged
over each period of the vestibular stimulus to form a one-period array (Supplementary Figure 2F), and
𝜃′′ represents the estimated pure contamination trace similarly averaged to form a one-period array
(Supplementary Figure 2G). During the averaging process of the contamination trace, data points with
a duration of <0.5 s and those deviating by 2 times the median absolute deviation from the median
were excluded.

2.5.1 Calculation for the rotational angle of the GIA vector.

The gravito-inertial acceleration (GIA) vector is given as a y, z coordinate, (𝐺𝐼𝐴$, 𝐺𝐼𝐴%) or
(cos(𝜃&'(− 90°), (sin(𝜃&'(− 90°), where 𝜃&'(is the angle of the GIA vector relative to the negative
z-axis, rotating around the goldfish’s x-axis. 𝐺𝐼𝐴) was provided by an acceleration sensor. During
translational motion (Translation Test and Training), the GIA vector angle can be obtained by solving
equation 𝐺𝐼𝐴* = −1 (G) and 𝐺𝐼𝐴$ 𝐺𝐼𝐴+⁄ = tan(𝜃&'(− 90°), as 𝜃&'(= tan"#(Acc. Sensor	Value)
following Lichtenberg (1982) (1) (Supplementary Figure 3A). During roll-tilt rotational motion (Roll-
Tilt Test), the GIA vector angle can be obtained by solving equation 𝐺𝐼𝐴) = cos(𝜃,-. − 90°), as
𝜃&'(= sin"#(Acc. Sensor	Value) (Supplementary Figure 3B).

Abbreviations

GIA, gravito-inertial acceleration; Hor., horizontal; Ver., vertical; pos., position; CM, contamination
removal.

References

1. Lichtenberg BK, Young LR, Arrott AP. Human ocular counterrolling induced by
varying linear accelerations. Exp Brain Res (1982) 48(1):127–36.
doi: 10.1007/BF00239580

Supplementary Figure Captions

Supplementary Figure 1. Relationship between the biasedly observed vertical eye position
determined by LabVIEW (𝜃, angle of the orange corn) and actual vertical eye position (𝜃′, angle of
the blue corn). The actual vertical eye position and its circular orbit (white circle) were projected onto
the observed vertical eye position and its elliptical orbit, which flattened horizontally (yellow ellipse

 3

orthogonal to the oblique vertical eye camera’s optical axis, ellipticity is cos10°). Note that the
angles depicted in the graphic are exaggerated compared with the actual camera placement.

Supplementary Figure 2. Removal of contamination in the horizontal eye position observed from
the tilted horizontal eye camera. (A) Graphical explanation of the relationship between the
contamination (𝜃′′, angle of the orange corn) and actual vertical eye position (𝜃′, angle of the blue
corn). Actual vertical eye position and its circular orbit (white circle) were respectively projected
onto the contamination and its elliptical orbit that flattened vertically (yellow ellipse orthogonal to
the tilted horizontal eye camera’s optical axis; ellipticity is sin 𝛼, where 𝛼 is the camera tilt angle).
Note that the angles depicted in the graphic are exaggerated compared with the actual camera
placement. (B)–(K) Series of sample analyses aimed at eliminating contamination from the observed
horizontal eye position. (B) Actual vertical eye position from the vertical eye camera. (C) Observed
horizontal eye position using a tilted horizontal eye camera. The contamination was prominent while
horizontally stationary and moving slowly (orange lines). (D) Horizontal saccades and eye drift. It
was assumed to be a purely horizontal eye position in the roll-tilt test before training. (E)
Contamination extracted using the function (𝐄) = (𝐂) − (𝐃).	(F) Period-averaged traces of (B). (G)
Average traces of (E). This indicates contamination. (H) Approximate curve that curve fitted the (G)–
(F) plot based on the function (𝐆) = tan"#(sin 𝛼) × tan(𝐅) and MATLAB ‘fit’ function. This curve
specifies the estimated camera angle 𝛼. (I) Estimated contamination, calculated as (𝐈) =
tan"#(sin 𝛼) × tan(𝐁).	(J) Average trace of (𝐉) = (𝐄) − (𝐈). This indicates the effectiveness of
contamination removal. (K) Calculated pure Horizontal Eye position, given by (𝐊) = (𝐂) − (𝐈). (B)–
(K) Series of examples in which the horizontal eye camera is extremely tilted to emphasize the effect
of contamination removal. The tilt angles of the cameras were generally much smaller.

Supplementary Figure 3. Positioning of the GIA vector. The GIA vector is given as a y, z
coordinate, (𝐺𝐼𝐴$, 𝐺𝐼𝐴%) or (cos(𝜃&'(− 90°), (sin(𝜃&'(− 90°), where 𝜃&'(is the angle of the GIA
vector relative to negative z-axis, rotating around the goldfish’s x-axis. 𝐺𝐼𝐴$ was provided by an
acceleration sensor. (A) 𝐺𝐼𝐴* during linear translational motion (Translation Test and Training) is
−1 (G); (B) length of GIA vector during roll-tilt rotational motion (Roll-Tilt Test) is 1 (G).

Supplementary Figure 1

Supplementary Figure 2

Supplementary Figure 3

Ω! 𝑡 =
Ω" 𝑡 =
Ω# 𝑡 =
𝐶! 𝑡 = 	𝑘$𝐶! 𝑡 − Δ𝑡 + 𝑘%Ω! 𝑡 − Δ𝑡
𝐶" 𝑡 = 	𝑘$𝐶" 𝑡 − Δ𝑡 + 𝑘%Ω" 𝑡 − Δ𝑡
𝐶# 𝑡 = 	𝑘$𝐶# 𝑡 − Δ𝑡 + 𝑘%Ω# 𝑡 − Δ𝑡
𝐺! 𝑡 = 𝐺!(𝑡 − Δ𝑡) − Δ𝑡𝐺# 𝑡 − Δ𝑡 Ω" 𝑡 − Δ𝑡 + Δ𝑡𝐺"(𝑡 − Δ𝑡)Ω#(𝑡 − Δ𝑡)
𝐺" 𝑡 = 𝐺"(𝑡 − Δ𝑡) + Δ𝑡𝐺#(𝑡 − Δ𝑡)Ω!(𝑡 − Δ𝑡) − Δ𝑡𝐺! 𝑡 − Δ𝑡 Ω# 𝑡 − Δ𝑡
𝐺# 𝑡 = 𝐺# 𝑡 − Δ𝑡 − Δ𝑡𝐺" 𝑡 − Δ𝑡 Ω! 𝑡 − Δ𝑡 + Δ𝑡𝐺! 𝑡 − Δ𝑡 Ω" 𝑡 − Δ𝑡
𝐴! 𝑡 =
𝐴" 𝑡 =
𝐴# 𝑡 =
𝐵! 𝑡 	 = 𝐵! 𝑡 − Δ𝑡 + Δ𝑡𝐴! 𝑡 − Δ𝑡
𝐵" 𝑡 	 = 𝐵" 𝑡 − Δ𝑡 + Δ𝑡𝐴" 𝑡 − Δ𝑡
𝐵# 𝑡 	 = 𝐵# 𝑡 − Δ𝑡 + Δ𝑡𝐴# 𝑡 − Δ𝑡
Φ! 𝑡 	=
Φ" 𝑡 	=
Φ# 𝑡 	=
𝑃! 𝑡 	 = 	𝑚$𝑃! 𝑡 − Δ𝑡
𝑃"(𝑡) 	 = 	𝑚$𝑃" 𝑡 − Δ𝑡
𝑃#(𝑡) 	 = 	𝑚$𝑃# 𝑡 − Δ𝑡

Head rotation
velocity

Semicircular Canal
endolymph velocity

Gravity

Head liner
acceleration

Head linear
velocity

Visual
velocity

Eye rotation
velocity

𝑉! 𝑡 = Ω! 𝑡 − 𝐶! 𝑡 + 𝑉!
&(𝑡)

𝑉" 𝑡 = Ω" 𝑡 − 𝐶" 𝑡 + 𝑉"
&(𝑡)

𝑉# 𝑡 = Ω# 𝑡 − 𝐶# 𝑡 + 𝑉#
&(𝑡)

𝐹! 𝑡 = 𝐴! 𝑡 	+ 𝐺! 𝑡 + 𝐹!
&(𝑡)

𝐹" 𝑡 = 𝐴" 𝑡 	+ 𝐺" 𝑡 + 𝐹"
&(𝑡)

𝐹# 𝑡 = 𝐴# 𝑡 	+ 𝐺# 𝑡 + 𝐹#
&(𝑡)

𝛹! 𝑡 	= 𝐿' 𝑡 𝛷! 𝑡 − 𝛺! 𝑡 	 + 𝑟𝐵" 𝑡 −	𝑃! 𝑡 +++++++++++++++++++++++ +	+ 𝛹!
&(𝑡)

𝛹" 𝑡 	= 𝐿' 𝑡 𝛷" 𝑡 − 𝛺" 𝑡 	+ 𝑟𝐵# 𝑡 	− 	𝑃" 𝑡 +++++++++++++++++++++++ +	+ 𝛹"
&(𝑡)

𝛹# 𝑡 	= 𝐿' 𝑡 𝛷# 𝑡 − 𝛺# 𝑡 	− 𝑟𝐵" 𝑡 	− 	𝑃# 𝑡 +++++++++++++++++++++++++ +𝛹#
&(𝑡)

Semicircular
canal signal

Otolith
signal

Retina
signal

Model of head motion, eye motion, vestibular sensors and visual sensors

Ω!(𝑡
Ω"(𝑡
Ω#(𝑡

𝐴!(𝑡
𝐴"(𝑡
𝐴#(𝑡

+ 𝑚%𝑃!(𝑡 − Δ𝑡
+ 𝑚%𝑃"(𝑡 − Δ𝑡
+ 𝑚%𝑃#(𝑡 − Δ𝑡

+Ω!) 𝑡
+Ω") 𝑡
+Ω#) 𝑡

+𝐴!) 𝑡
+𝐴") 𝑡
+𝐴#) 𝑡

+Φ!) 𝑡
+Φ") 𝑡
+Φ#) 𝑡
+ 𝑚%𝑃!) 𝑡
+ 𝑚%𝑃") 𝑡
+ 𝑚%𝑃#) 𝑡

Canal dynamics time const
𝜏𝐶	 = 0.5 [s]
𝑘$ 	= 	1	 − Δ𝑡/𝜏𝐶
𝑘% 	= Δ𝑡/𝜏𝐶

Muscle dynamics time const
𝜏* 	= 	0.003 [s]
𝑚$ = 1 − Δ𝑡/𝜏*
𝑚% 	= Δ𝑡/𝜏*

Time step
Δ𝑡 = 	0.002 [s]

Parameters

2.6 Kalman filter model

Coefficient for linear stimulus
𝑟	 = 4

𝐿' 𝑡 = B1	 if	the	light	is	ON
0	 Otherwise	

𝐿# 𝑡 is always set to 1 in 𝑴 and 𝑻 used in the Kalman
filter to continue the estimation during the dark interval.

Variable to describe light or dark

In the real world model,

In the Kalman filter model, 𝐿' 𝑡 = 1

2.6.1 Model of head and eye motion with sensors

0 0
0 0
0 0
𝑘% 0 0 𝑘$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 𝑘% 0 0 𝑘$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 𝑘% 0 0 𝑘$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −Δ𝑡𝐺# 𝑡 Δ𝑡𝐺" 𝑡 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Δ𝑡𝐺# 𝑡 0 −Δ𝑡𝐺! 𝑡 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
−Δ𝑡𝐺" 𝑡 Δ𝑡𝐺! 𝑡 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0
0 0
0 0
0 0 0 0 0 0 0 0 0 Δ𝑡 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Δ𝑡 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 Δ𝑡 0 0 1 0 0 0 0 0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑚$ 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑚$ 0
0 𝑚$

𝑫 =

2.6.2 Model in matrix form

𝑿(𝑡) = 𝑫	𝑿 𝑡 − Δ𝑡 + 	𝑴	𝑿P(𝑡) + 	𝑬	𝑿Q(𝑡)
Where:

𝑿 𝑡 = 𝛺! 𝑡 	𝛺" 𝑡 	𝛺# 𝑡 	𝐶! 𝑡 	𝐶" 𝑡 	𝐶# 𝑡 	𝐺! 𝑡 	𝐺" 𝑡 	𝐺# 𝑡 	𝐴! 𝑡 	𝐴" 𝑡 	𝐴# 𝑡 	𝐵! 𝑡 	𝐵" 𝑡 	𝐵# 𝑡 	𝛷! 𝑡 	𝛷" 𝑡 	𝛷# 𝑡 	𝑃! 𝑡 	𝑃" 𝑡 	𝑃# 𝑡
+

𝑿(𝑡 = 𝛺!(𝑡 	𝛺"(𝑡 	𝛺#(𝑡 	𝐴!(𝑡 	𝐴"(𝑡 	𝐴#(𝑡 	𝛷!(𝑡 	𝛷"(𝑡 	𝛷#(𝑡 	𝑃!(𝑡 	𝑃"(𝑡 	𝑃#(𝑡
+

𝑿) 𝑡 = 𝛺!) 𝑡 	𝛺") 𝑡 	𝛺#) 𝑡 	𝐴!) 𝑡 	𝐴") 𝑡 	𝐴#) 𝑡 	Φ!) 𝑡 	𝛷") 𝑡 	𝛷#) 𝑡 	𝑃!) 𝑡 	𝑃") 𝑡 	𝑃#) 𝑡
+

𝑺 𝑡 = 𝑉! 𝑡 	𝑉" 𝑡 	𝑉# 𝑡 	𝐹! 𝑡 	𝐹" 𝑡 	𝐹# 𝑡 	𝛹! 𝑡 	𝛹" 𝑡 	𝛹# 𝑡
!

𝑺& 𝑡 = 𝑉!
& 𝑡 	𝑉"

& 𝑡 	𝑉#
& 𝑡 	𝐹!

& 𝑡 	𝐹"
& 𝑡 	𝐹#

& 𝑡 	𝛹!
& 𝑡 	𝛹"

& 𝑡 	𝛹#
& 𝑡 +

State variables

Input variables

Stimuli variables
 + Process noises

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 𝑚% 0 0
0 0 0 0 0 0 0 0 0 0 𝑚% 0
0 0 0 0 0 0 0 0 0 0 0 𝑚%

𝑴 =

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 𝐿' 𝑡 0 0 0 0 0
0 0 0 0 0 0 0 𝐿' 𝑡 0 0 0 0
0 0 0 0 0 0 0 0 𝐿' 𝑡 0 0 0
0 0 0 0 0 0 0 0 0 𝑚% 0 0
0 0 0 0 0 0 0 0 0 0 𝑚% 0
0 0 0 0 0 0 0 0 0 0 0 𝑚%

𝑬 =

𝑺(𝑡) = 𝑻	𝑿(𝑡) +	𝑺V(𝑡)

State-space equations

Output equations

Where:
𝑻 =

1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

−𝐿' 𝑡 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝐿' 𝑡 0 0 −𝐿' 𝑡 0 0
0 −𝐿' 𝑡 0 0 0 0 0 0 0 0 0 0 0 0 𝑟𝐿' 𝑡 0 𝐿' 𝑡 0 0 −𝐿' 𝑡 0
0 0 −𝐿' 𝑡 0 0 0 0 0 0 0 0 0 0 −𝑟𝐿' 𝑡 0 0 0 𝐿' 𝑡 0 0 −𝐿' 𝑡

Sensory variables

Sensory noise

The dash denotes a transpose of a matrix.

2.6.3 Kalman filter algorithm and control feedback

/𝑿X 𝑡 = 𝑫	/𝑿(𝑡 − Δ𝑡) + 	𝑴	𝑿P(𝑡)
0𝑺X 𝑡 	= 𝑻	/𝑿X 𝑡
𝚫𝑺 𝑡 	= 𝑺 𝑡 − 0𝑺X 𝑡
𝚫/𝑿 𝑡 = 𝑲 𝑡 𝚫𝑺 𝑡
/𝑿 𝑡 	 = /𝑿X 𝑡 + 𝚫/𝑿 𝑡

Optimal estimates

Control feedback

Update equation of Kalman gain
𝑲(𝑡) = 𝑳X 𝑡 𝑻′ 𝑻𝑳X 𝑡 𝑻′ + 𝑹 YZ

𝑳X 𝑡 = 𝑫𝑳 𝑡 − Δ𝑡 𝑫′ + 𝑸
𝑳 𝑡 = 𝑰 − 𝑲 𝑡 𝑻 𝑳X(𝑡)

𝑃!(𝑡 = ℎ	(\𝛷!(𝑡) 	−]𝛺!(𝑡))
𝑃"(𝑡 = ℎ	(\𝛷"(𝑡) 	−]𝛺"(𝑡) 	+ 𝑟]𝐵#(𝑡))

𝑃#(𝑡 = ℎ	(\𝛷#(𝑡) 	−]𝛺#(𝑡)	 – 𝑟]𝐵"(𝑡))

Eye motor
command

Where: control gain ℎ	 = 0.8

Estimated state variables

Predicted sensor variables

Where:

\𝑿 𝑡 	 =]𝛺! 𝑡]𝛺" 𝑡]𝛺# 𝑡 	𝐶̀! 𝑡 	𝐶̀" 𝑡 	𝐶̀# 𝑡]𝐺! 𝑡]𝐺" 𝑡]𝐺# 𝑡 	𝐴̀! 𝑡 	𝐴̀" 𝑡 	𝐴̀# 𝑡]𝐵! 𝑡]𝐵" 𝑡]𝐵# 𝑡 	 \𝛷! 𝑡 	 \𝛷" 𝑡 	 \𝛷# 𝑡]𝑃! 𝑡]𝑃" 𝑡]𝑃# 𝑡
+

𝚫\𝑿 𝑡 = Δ]𝛺! 𝑡 	Δ]𝛺" 𝑡 	Δ]𝛺# 𝑡 	Δ𝐶̀! 𝑡 	Δ𝐶̀" 𝑡 	Δ𝐶̀# 𝑡 	Δ]𝐺! 𝑡 	Δ]𝐺" 𝑡 	Δ]𝐺# 𝑡 	Δ𝐴̀! 𝑡 	Δ𝐴̀" 𝑡 	Δ𝐴̀# 𝑡 	Δ]𝐵! 𝑡 	Δ]𝐵" 𝑡 	Δ]𝐵# 𝑡 	Δ\Φ! 𝑡 	Δ \𝛷" 𝑡 	Δ \𝛷# 𝑡 	Δ]𝑃! 𝑡 	Δ]𝑃" 𝑡 	Δ]𝑃# 𝑡
+

\𝑺, 𝑡 	=]𝑉! 𝑡]𝑉" 𝑡]𝑉# 𝑡]𝐹! 𝑡]𝐹" 𝑡]𝐹# 𝑡 	 \𝛹! 𝑡 	 \𝛹" 𝑡 	 \𝛹# 𝑡
!

Feedback variables

𝚫𝑺 𝑡 	= Δ]𝑉! 𝑡 	Δ]𝑉" 𝑡 	Δ]𝑉# 𝑡 	Δ]𝐹! 𝑡 	Δ]𝐹" 𝑡 	Δ]𝐹# 𝑡 	Δ\𝛹! 𝑡 	Δ\𝛹" 𝑡 	Δ\𝛹# 𝑡
+

Predicted sensor errors

𝑸 = 𝑬

𝜎- % 0 0 0 0 0 0 0 0 0 0 0
0 𝜎- % 0 0 0 0 0 0 0 0 0 0
0 0 𝜎- % 0 0 0 0 0 0 0 0 0
0 0 0 𝜎!. % 0 0 0 0 0 0 0 0
0 0 0 0 𝜎".

% 0 0 0 0 0 0 0
0 0 0 0 0 𝜎#. % 0 0 0 0 0 0
0 0 0 0 0 0 𝜎/ % 0 0 0 0 0
0 0 0 0 0 0 0 𝜎/ % 0 0 0 0
0 0 0 0 0 0 0 0 𝜎/ % 0 0 0
0 0 0 0 0 0 0 0 0 𝜎0 % 0 0
0 0 0 0 0 0 0 0 0 0 𝜎0 % 0
0 0 0 0 0 0 0 0 0 0 0 𝜎0 %

𝑬+ 𝑹 =

𝜎1 % 0 0 0 0 0 0 0 0
0 𝜎1 % 0 0 0 0 0 0 0
0 0 𝜎1 % 0 0 0 0 0 0
0 0 0 𝜎2 % 0 0 0 0 0
0 0 0 0 𝜎2 % 0 0 0 0
0 0 0 0 0 𝜎2 % 0 0 0
0 0 0 0 0 0 𝜎3 % 0 0
0 0 0 0 0 0 0 𝜎3 % 0
0 0 0 0 0 0 0 0 𝜎3 %

Predicted state variables \𝑿, 𝑡

𝑰 is an identity matrix. 𝑳, 𝑡 and 𝑳 𝑡 are covariances of the predicted and updated estimate.
𝑸 and 𝑹 are the covariance matrices of 𝑬	𝑿)	 and 𝑺&.

𝑲 𝑡 is a Kalman gain matrix. 𝑫, 𝑴	and 𝑻 are coefficient matrices. 𝑿$(𝑡) is input variables. 𝑺 𝑡 is sensory variables.

	空白ページ
	空白ページ
	空白ページ

