"\' frontiers

Supplementary Material

1 DESCRIBING GMRFS THROUGH SPDES
Whittle| (1954) showed that the solution, u(s), of the stochastic partial differential equation (SPDE)
(k(s)* =V -H(s)V)u(s) = W(s), seDCR3 (S1)

i1s a Gaussian Markov random field (GMRF) with a Matérn covariance function. The approach was
popularized by Lindgren et al. (2011)); then, extended to non-stationary and anisotropic 2D fields in
Fuglstad et al. (2015a,b)), and recently to 3D fields by Berild and Fuglstad| (2023)).

In Equation (SI)), W(s) is Gaussian white noise, while « is a parameter controlling both variance and
range of the GMRF. The component H is also used to regulate the variance and the range, but more
importantly, it is controlling the anisotropy of the Laplacian, V - HV, and thus the anisotropy of the
resulting field. With this anisotropy, the model can account for varying properties depending on directions.
Also, note that x(s) and H(s) in Equation (SI) are allowed to vary through space.

In the following, we will describe the parametrization of the anisotropy (Section|[I.1)), the non-stationarity
(Section [I.2)), properties of the GMRF described through the SPDE (Section [[.3)), and how we infer
parameters from data (Section[I.4).

1.1 Parametrizing Anisotropy

The spatially and directionally varying covariances are described by controlling the eigenvalues and
eigenvectors of the matrix H in the anisotropic Laplacian. Berild and Fuglstad| (2023) proposed the
following parsimonious and interpretable parameterization

H(s) = v(s)I3 + v(s)v(s)T + w(s)w(s)T, (52)

where 7(s) > 0, v = (vy,vy,0,)" € R3 and w = (wy,wy,w,)T € R? whereby v L w. Thus, the
eigenvalues are A\ = v, Ao = v + HUH2, and \3 = v + HwH2 with eigenvectors v; = v X w, v2 = v, and
V3 = w.

The vector v is simply parametrized with its Cartesian components, v;, vy, and v,. Further, w is
parametrized by two scalars, p; and p2, controlling the linear combination of two orthogonal vector,
w1 = (—vy, Vg O)T and wy = v X w1, in the plane with v as normal vector such that

2 (S3)

w1 +
W = 01 2 .
Pwr] " sl

1.2 Parametrizing non-stationarity

The non-stationarity is obtained by allowing the parameters x, 7, vy, vy, v, p1 and po to vary throughout
space. This is achieved by describing these parameters as spline functions:

9(s) = (s)" g (S4)
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Here, o, € R? is a vector of weights or the new parameters for the spline function g(-) or the old parameter,
and (s) = (f1(s),...,fp(s))T is a p-dimensional vector of B-spline basis functions evaluated at location
s. These basis splines are constructed as a tensor product of three clamped 1D second-order B-splines in
each dimension as

fiik(8) = Byi(x) - By j(y) - Bog(2), s=(2,y,2)" €D, (S5)

where B, ; is the ¢ — th component in the z-direction and similarly for the other directions. Thereby, the
number of parameters for each spline function g(-) is p = 27 which in total is 189 parameters or B-spline
weights for all spline functions in our model. We collect them as

0= (alog(ﬁz),alom,avx,avy,avz,apl,am) )

1.3 General properties

As mentioned in Section (1.4|the parameters controlling the covariance structure in the spatial effect are
learned from the residuals of an autoregressive model of order one fit to the SINMOD dataset y. This gives
the underlying process

zg|0 ~ N, (0,Q71(9)), (S6)

with zero mean and the inverse covariance matrix Q(6). In this case €z = u, where u is the random
variable specified through the SPDE.

The marginal variance for the solution w of the SPDE, can be derived through a series of calculations.
The transfer function for Equation (S1) is g(w) = (k? + wTHw)~! and given the spectral density of
Gaussian white noise in R? is (27r) 3 the spectral density of the solution of the SPDE is

fs(w) = (2#)_3(/12 + wTH'w)_l. (S7)

Lastly, the variance of the solution is found by integrating its spectral density over the whole domain R3,
and thus, the variance of the process we are trying to describe is

Var (z(s)) = L

= . S8
8mk(s)y/det(H(s)) (58)

Moreover, in a stationary case where x(s) = x and H(s) = H for all s the covariance of the process
between two locations s and s, in R3 can be written as

1

8mk+/det(H)

or namely an exponential covariance function.

Cov (2(s1), 2(s2)) = exp (—k|IH (51— s2)]]) (S9)
1.4 Parameter inference

Following the notation from the process defined in Equation the data model for the innovations are

YplTr, 08 ~ N (Azpg, 08l,) . (S10)




Here, matrix A is a m by n matrix linking the locations of the observation y  to our discretization in the
process i, and ag is the independent noise in the innovations.

To find the optimal parameters such that our models best describe the innovations we will maximize the
likelihood function of the parameters. Specifically, the parameters have a multivariate Gaussian distribution,
and following common practice we will optimize the logarithmic transformation of this likelihood, thereby
the log-likelihood:

1

(0, 03|y) = Const + log 7(8, 03) + 3 log det (Q) — %log(ag)
1 1 p 1 . (S11)

— 5logdet (Qc) — SucQerc — 55U — Apc) (¥ — Apc).

2 2 203

The reader is referred to the supplementary material of |Berild and Fuglstad| (2023)) for a full derivation
of the log-likelihood. In Equation (S11)), Qc is the conditional precision matrix, i.e. the precision matrix
given that the model has seen y,

Qc=Q+ATA/5S. (S12)

Similarly, the conditional mean is
pe =Qc'ATAy/dd. (S13)

Note that this is similar to the equations used in the model updating, but with ;& = 0 as assumed by our
process of these innovations.

The parameter space is quite challenging to explore so we use an analytical expression for the gradient
to determine the search directions. In order to speed up the gradient calculations a stochastic version is
calculated, and therefore, ultimately the optimization strategy is a stochastic gradient descent algorithm.
Furthermore, we have employed a root mean square propagation (RMSprop) in the optimization to improve
the stability and convergence.

2 EIBV DESIGN CRITERIA

For any design d at stage ¢ giving data y = y4, the EIBV reduction in can be rephrased as

EIBV(“’C,tfb QC,t—l) = /Eyytl {ps(y, Ve—1)[1 — ps(y, Vi-1)]} ds,
ps(y;J)tfl) = P(m(S) S €|y>yt71)7 (814)

where )1 denotes all the data gathered at stages before ¢. The probability ps(y, Vi—1) is a Gaussian
cumulative distribution function (CDF) with linear conditioning to ¥ in the mean and with a variance that
does not depend on the outcome of the data.

The conditional mean at stage ¢ — 1 is puc ;1 with entries pc;—1(si), i = 1,...,n. The conditional
covariance matrix is ¥¢ ;1 = Q¢ 1t_1 with diagonal entries J% +—1(8:), and after the updating we have

Yo = Qalt with diagonal entries 0(23 t(si). Based on results of (Chevalier et al. (2014) and |[Fossum et al.
(2021)), the EIBV in Equation (S14) can be evaluated in closed form as a bivariate Gaussian CDF depending
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on these parameters.

n
EIBV(ucy-1,Qoi1) = > EBV(uai1(si),08,-1(i),08,(s)) (S15)
i=1

EBV(p, 0% u?) = @ (l_ﬂ : [_777]} | [(uﬂvj ) <w2v_2 UQ)D :

where ®5 denotes the bivariate Gaussian cumulative distribution function.

We note that this closed form EIBV calculation in equation (ST5)) relies on the variance terms and their
reduction in the updating step (w? = aét(si) compared with v? = U%,tq(si))- In the formulation with
the precision matrix, these terms are not immediately available. Matrix recursions exist for computing the
marginal variance terms from the precision matrix, see e.g. Zammit-Mangion and Rougier (2018)), but the
solution can be computationally challenging in 3D because of rather large fill-in of non-zeros in the sparse
matrix structure during the recursion. We instead approximate the required variance terms by Monte Carlo
sampling from the GMRF model.

Conditional samples are here generated by a trick known as conditioning by Kriging equation (see e.g.
Wackernagel| (2003))). This relies on the following steps; first an unconditional sample :c% ¢ of the field is
generated. In our case this comes from the Gaussian distribution with mean pc ;g and precision matrix
Qc,¢—1.- Next, a synthetic data sample T A:1r;bC¢_1 + €, € ~ N(0,02,,I,,) is generated according to
the specified design. Finally, a conditional sample is formed by solving the equation for the conditional
mean (also known as the Kriging equation), given the synthetic data:

@by = 2l 1+ Qo AT (80— Ay ) /o (S16)

This procedure is repeated for b = 1, ..., B independent Monte Carlo samples. We used B = 100 in our
implementation. Equation (SI6)) requires matrix-vector solves with the sparse precision matrix which can
be done very fast.

When the optimal design is selected, the AUV acts to move in the direction of the selected design. It
senses salinity data y, and then Equation (S16) is used with these in-situ observations in place of y’ to get
the conditional samples for time stage ¢. The resulting Monte Carlo sample azl(’j .»b=1..., B forms the
basis for the EIBV evaluation at the next time step, when ¢t — ¢ + 1. 7
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