1 Appendix

The structures of EEGNet, DeepConvNet, ShallowConvNet, and CNN-BiLSTM are described in detail in Tables 4, 5, 6, and 7. EEGNet is a specialized, compact convolutional neural network used for processing EEG signals, while ShallowConvNet is intended for oscillatory signals. ShallowConvNet is optimized for handling oscillatory signals, while DeepConvNet is a generalized CNN architecture. However, the convolutional neural network's perceptual field is inadequate for capturing contextual information in EEG. CNN-BiLSTM amalgamates CNN and LSTM to augment the perceptual field of CNN. However, the model is vulnerable to overfitting.

Table 4. EEGNet structure, where F_1 = number of temporal kernels, T = length of temporal kernels, D = number of spatial kernels, C = number of channels, F_2 = number of pointwise kernels, N = number of classes, and S = length of sample.

Layer	Filters	Size
Input		(C, S, 1)
Conv2D	<i>F</i> ₁	(1, <i>T</i>)
BatchNorm		
DepthwiseConv2D	$D \times F_1$	(<i>C</i> , 1)
BatchNorm		
Activation (ELU)		
AveragePool2D		(1, 4)
Dropout		
SeparableConv2D	F_2	(1, 16)
BatchNorm		
Activation (ELU)		
AveragePool2D		(1, 8)
Dropout		

Flatten		
Dense	$N \times (F_2 \times S//32)$	

Table 5. DeepConvNet structure, where C = number of channels, S = length of sample, and N = number of classes.

Layer	Filters	Size
Input		(<i>C</i> , <i>S</i> , 1)
Conv2D	25	(1, 5)
Conv2D	25	(<i>C</i> , 1)
BatchNorm		
Activation (ELU)		
MaxPool2D		(1, 2)
Dropout		
Conv2D	100	(1, 5)
BatchNorm		
Activation (ELU)		
MaxPool2D		(1, 2)
Dropout		
Conv2D	50	(1, 5)
BatchNorm		
Activation (ELU)		
MaxPool2D		(1, 2)
Dropout		

Conv2D	100	(1, 5)
BatchNorm		
Activation (ELU)		
MaxPool2D		(1, 2)
Dropout		
Conv2D	200	(1, 5)
BatchNorm		
Activation (ELU)		
MaxPool2D		(1, 2)
Dropout		
Flatten		
Dense	N	

Table 6. ShallowConvNet structure, where C = number of channels, S = length of sample, and N = number of classes. The 'square' and 'log' activation functions are given as $f(x) = x^2$ and f(x) = log(x), respectively.

Layer	Filters	Size
Input		(C, S, 1)
Conv2D	40	(1, 13)
Conv2D	40	(<i>C</i> , 1)
BatchNorm		
Activation (square)		
AveragePool2D		(1, 35), stride (1, 7)
Activation (log)		

Flatten		
Dropout		
Dense	Ν	

Table 7. CNN-BiLSTM structure, where F_1 = number of temporal kernels, T = length of temporal kernels, D = number of spatial kernels, C = number of channels, F_2 = number of pointwise kernels, N = number of classes, and S = length of sample.

Layer	Filters	Size
Input		(<i>C</i> , <i>S</i> , 1)
Conv2D	<i>F</i> ₁	(1, <i>T</i>)
BatchNorm		
DepthwiseConv2D	$D \times F_1$	(<i>C</i> , 1)
BatchNorm		
Activation (ELU)		
AveragePool2D		(1, 4)
Dropout		
SeparableConv2D	<i>F</i> ₂	(1, 16)
BatchNorm		
Activation (ELU)		
TimeDistributed (Flatten)		
Bidirectional (LSTM)	64	
Flatten		
Dropout		

Dense	N	