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Methods section 

Synthesis of 2TC-TT-BDTFT  

 

To {4,8-bis[5-(2-etylhexyl)-4-fluorothiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}bis(tri- 

methylstannane) (1) (94 mg, 0.1 mmol, 1.3 equiv.) and bis(2-butyloctyl)-2,2'-(thieno[3,2-b]thiophene-

2,5-diyl)bis(5-bromothiophene-3-carboxylate) (2) (89 mg, 0.77 mmol, 1 equiv) in a dried schlenk tube, 

Pd2(dba)3·CHCl3 (3.1 mg, 0.003 mmol, 0.039 equiv) and P(o-tol)3 (3.7 mg, 0.12 mmol, 0.15 equiv) 

were added and the reaction mixture was put under argon atmosphere. Subsequently, toluene (2 mL) 

was added. The reaction vessel was subjected 5x to a vacuum-Ar cycle and heated at 110 °C for 16 h. 

The reaction mixture was then added to MeOH (100 mL) and the resulting precipitate was transferred 

into an extraction thimble. Soxhlet extraction was performed in the following order: methanol, acetone, 

n-hexane, and dichloromethane. Extractions were always done until the solvent in the extraction 

chamber was colorless. Finally, the dichloromethane fraction was precipitated, yielding 62 mg (60%) 

of a red solid. SEC (1,2,4-TCB,160 °C, PS standards): Mn = 7.2 kDa, Mw = 11.1 kDa, Mp = 8.6 kDa, Ð 

= 1.5. 

Matrix-assisted laser desorption-ionization - time of flight mass spectrometry (MALDI-ToF MS) 

Mass spectra were recorded on a Bruker UltrafleXtremeTM MALDI-ToF/ToF system. Approximately 

1 µL of the matrix solution (25 mg mL-1 trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]-

malononitrile (DTCB) in CHCl3) was spotted onto an MTP Anchorchip 600/384 MALDI plate. The 

spot was allowed to dry and 1 µL of the analyte solution (10 mg mL-1 in CHCl3) was spotted on top of 

the matrix. 

Gel permeation chromatography (GPC) 

Polymer molar mass distributions were estimated by SEC at 160 °C on an Agilent 1260 Infinity II 

high-temperature gel permeation chromatography (GPC) system using a PL-GEL 10 µm MIXED-B 

column with 1,2,4-trichlorobenzene as the eluent and using polystyrene (PS) internal standards. 
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Supplementary Figures and Tables 

Supplementary Table 1. Evolution of the power conversion efficiency of SC-OSCs based on CBCs 

(data used to produce Figure 1a). 

Publication 

Year 

PCE  

SC-OSCs 

(%) Reference 

2013 3.1 (1) 

2015 2.24 (2) 

2015 0.55 – 0.95 (3) 

2016 1.00 (4) 

2016 0.22 (5) 

2017 0.36 – 1.54 (6) 

2018 3.87 (7) 

2019 5.28 (8) 

2020 6.43 (9) 

2021 11.32 (10) 

2021 4.20 – 8.64 (11) 

2022 14.88 (12) 

2022 10.51 (13) 

2022 10.55 (14) 

2022 4.35 (15) 

2023 14.30 (16) 

2023 13.73 (17) 

2023 13.40 (18) 

2023 13.40 (19) 

 

Supplementary Table 1. Data for the efficiency and stability comparison of CBC-based SC-OSCs 

and binary all-polymer solar cells (Figure 1b-c). 

Reference 

PCE  

SC-OSCs 

(%) 

PCE 

all-polymer 

solar cells  

(%) 

Temperature 

(°C)a 

Duration 

(h)a 

Residual PCE 

SC-OSCs 

(normalized) 

Residual PCE 

all-polymer 

solar cells 

(normalized) 

(10) 11.32 14.57 ambient 240 0.85 0.71 

(11) 8.64 12.2 80 1000 0.80 0.64 

(12) 14.88 14.57 85 500 0.87 0.66 

(14) 10.55 8.24 120 400 0.90 0.80 

(17) 13.73 13.09 85 240 0.67 0.54 

(18) 13.4 12.26 ambient 480 0.91 0.88 

a Temperature and duration of the (thermal) treatment to induce solar cell degradation. 
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Supplementary Figure 1. MALDI-ToF mass spectrum of 2TC-TT-BDTFT.  

 

Supplementary Figure 2. GPC trace for 2TC-TT-BDTFT. 
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