
Appendix 

K-Nearest Neighbour (kNN) 

The kNN method is a straightforward machine learning algorithm commonly employed for both 
classification and regression tasks. When applied to regression, the kNN algorithm operates by 
assigning the property value of an object as the average of the values belonging to its k nearest 
neighbors (Kramer 2013). 

In kNN implementations, two essential parameters need to be determined: the number of 
neighbors (k) and the type of distance metric used to determine proximity between instances. 
Selecting an appropriate value for k is crucial as it directly impacts the smoothness and 
accuracy of the predictions. Additionally, the choice of distance measure is important as it 
determines how the algorithm quantifies the similarity or dissimilarity between data points. 

The problem in regression is to predict labels �̂�  ∈ ℝ𝑑  for new patterns �̂�  ∈ ℝ𝑞  based on a set 
of N observations, i.e., labeled patterns {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)}. In kNN regression, �̂� is 
estimated as the mean value of the k-nearest neighbors: 
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where 𝑁𝑘(�̂�) contains the indices of the k-nearest neighbors of �̂�. Several distance metrics are 
commonly used to measure the similarity or dissimilarity between data points in kNN, some of 
which are Euclidean, Mahalanobis, Manhattan, Minkowski, Chebyshev, Cosine, Correlation, 
Hamming, and Jaccard, among others (Prasath et al. 2019).  

The kNN algorithm produces locally constant outputs, leading to the formation of plateaus 
within the output space. However, from an optimization perspective, these plateaus can hinder 
the efficiency of optimization methods in effectively approximating the optimal solution. The 
existence of plateaus limits the available information for identifying promising search 
directions during the optimization process, thereby impeding the rapid convergence of 
optimization methods toward the optimal solution. To address this issue, Bailey (Bailey 1978) 
introduced the distance-weighted kNN approach, which assigns weights to each neighbor's 
contribution in the estimation based on its distance to �̂�: 
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with: 
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Hence, closer neighbors have a higher impact on the prediction.  

Random Forest Regression (RFR) 

Random Forest Regression (RFR) is a powerful and versatile supervised learning algorithm for 
regression tasks. It belongs to the family of ensemble methods, combining the principles of 



decision trees and bagging. RFR is particularly effective when dealing with complex datasets, 
as it can handle numerical and categorical variables. 

In RFR, an ensemble of decision trees is built to create a robust predictive model. Each decision 
tree is trained on a randomly selected subset of the training data and a random subset of 
features, which helps reduce overfitting and increase model accuracy. During training, the 
decision trees learn to make predictions by partitioning the feature space into smaller regions 
based on the values of the input features. 

To make predictions with RFR, the algorithm combines the predictions of all individual decision 
trees in the ensemble, as illustrated in Figure 15. The final prediction is determined by averaging 
or taking the median of the predictions from the individual trees, depending on the specific 
regression problem. This aggregation process helps to reduce the impact of outliers and noise, 
leading to more stable and accurate predictions. 

 

Figure 15. Scheme of Random Forest. 

 

Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) are machine learning models inspired by the structure and 
function of biological neural networks (Hagan et al. 2014). As shown in Figure 16, ANNs consist 
of an input layer, an output layer, and one or more hidden layers in between. Each neuron in the 
input layer receives an input signal transmitted through the network via weighted connections 
between neurons. The neurons in each hidden layer perform a non-linear transformation on the 
input signal, and the output of each neuron is determined by an activation function, such as a 
sigmoid or ReLU function. The output layer produces the final output of the network. 



 

Figure 16. Scheme of an ANN. 

One of the key features of ANNs is that they are feedforward networks, meaning that 
information flows in only one direction, from the input layer to the output layer. This prevents 
cycles or loops in the network and ensures that the network's output is well-defined for a given 
input. As an example, the outputs of a three-layer ANN are given by 
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where 𝐱 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝒚 = {𝑦1, 𝑦2, … , 𝑦𝑚} are the input and output vectors, 𝐰 and 𝐯 are 
the interconnection weights, 𝐛 represents the bias (or threshold) terms and f is the transfer 
function, usually a sigmoid function. The training of an ANN involves adjusting the weights and 
biases of the connections between neurons so that the network produces accurate outputs for 
a given set of inputs. This is typically achieved through a process called backpropagation, which 
involves calculating the error between the network's output and the desired output, and then 
propagating this error back through the network to adjust the weights and biases. Training aims 
to minimize the difference between the network's output and the desired output, usually 
measured using a loss function such as mean squared error. Once trained, the network can 
make predictions on new, unseen data. 

Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a heuristic optimization technique inspired by the social 
behavior of birds flocking or fish schooling. Introduced by Eberhart and Kennedy in 1995 
(Eberhart and Kennedy 1995), this algorithm simulates the collective behavior of a swarm to 
search for optimal solutions in a multidimensional space. 

A 'swarm' in PSO comprises potential solutions to a given problem, each termed as a 'particle'. 
Each particle has a position representing a potential solution and a velocity dictating the 
change in position over iterations. The particles 'fly' through the solution space by adjusting 



their positions based on their own best-known position and the global best-known position of 
the swarm. 

The particles are randomly initialized with positions and velocities. Then, the fitness of each 
particle (i.e., the quality of the solution it represents) is evaluated using a predefined objective 
function. Each particle updates its velocity and position based on a combination of its historical 
best position, the swarm's best position, and some stochastic elements. Specifically, the new 
velocity and position are updated using the formula: 

𝑣𝑖 = 𝑤𝑣𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖)
𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖

 (12) 

Where 𝑣𝑖  denotes the ith particle's velocity, while 𝑤 acts as an inertia weight that moderates its 
momentum. The coefficients  𝑐1 and 𝑐2 represent cognitive and social scaling factors, 
respectively. Both 𝑟1 and 𝑟2 are random values selected from the interval [0,1]. The terms 𝑝𝑏𝑒𝑠𝑡,𝑖  
and 𝑔𝑏𝑒𝑠𝑡  refer to the ith particle's optimal historical position and the swarm's overall optimal 
position, respectively. The symbol 𝑥𝑖  indicates the ith particle's current position. The PSO 
process concludes either upon reaching a predetermined maximum number of iterations or 
when specific conditions are satisfied, such as a negligible variation in 𝑔𝑏𝑒𝑠𝑡  over consecutive 
iterations. 

Due to its simplicity, flexibility, and robustness, PSO has been applied to a wide variety of 
optimization problems, including function optimization, neural network training, clustering, 
and many others (Poli, Kennedy, and Blackwell 2007). 

 

 


