
Appendix

K-Nearest Neighbour (kNN)

The kNN method is a straightforward machine learning algorithm commonly employed for both
classification and regression tasks. When applied to regression, the kNN algorithm operates by
assigning the property value of an object as the average of the values belonging to its k nearest
neighbors (Kramer 2013).

In kNN implementations, two essential parameters need to be determined: the number of
neighbors (k) and the type of distance metric used to determine proximity between instances.
Selecting an appropriate value for k is crucial as it directly impacts the smoothness and
accuracy of the predictions. Additionally, the choice of distance measure is important as it
determines how the algorithm quantifies the similarity or dissimilarity between data points.

The problem in regression is to predict labels �̂� ∈ ℝ𝑑 for new patterns �̂� ∈ ℝ𝑞 based on a set
of N observations, i.e., labeled patterns {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)}. In kNN regression, �̂� is
estimated as the mean value of the k-nearest neighbors:

𝑦 ̂ =
1

𝑁
∑ 𝑦𝑖

𝑖∈𝑁𝑘(�̂�)

,
(8)

where 𝑁𝑘(�̂�) contains the indices of the k-nearest neighbors of �̂�. Several distance metrics are
commonly used to measure the similarity or dissimilarity between data points in kNN, some of
which are Euclidean, Mahalanobis, Manhattan, Minkowski, Chebyshev, Cosine, Correlation,
Hamming, and Jaccard, among others (Prasath et al. 2019).

The kNN algorithm produces locally constant outputs, leading to the formation of plateaus
within the output space. However, from an optimization perspective, these plateaus can hinder
the efficiency of optimization methods in effectively approximating the optimal solution. The
existence of plateaus limits the available information for identifying promising search
directions during the optimization process, thereby impeding the rapid convergence of
optimization methods toward the optimal solution. To address this issue, Bailey (Bailey 1978)
introduced the distance-weighted kNN approach, which assigns weights to each neighbor's
contribution in the estimation based on its distance to �̂�:

𝑦 ̂ = ∑
𝑤(𝑥𝑖)

∑ 𝑤(𝑥𝑗)𝑗∈𝑁𝑘(�̂�)
𝑦𝑖

𝑖∈𝑁𝑘(�̂�)

,
(9)

with:

𝑤(𝑥𝑖) =
1

‖�̂� − 𝑥𝑖‖2
,

(10)

Hence, closer neighbors have a higher impact on the prediction.

Random Forest Regression (RFR)

Random Forest Regression (RFR) is a powerful and versatile supervised learning algorithm for
regression tasks. It belongs to the family of ensemble methods, combining the principles of

decision trees and bagging. RFR is particularly effective when dealing with complex datasets,
as it can handle numerical and categorical variables.

In RFR, an ensemble of decision trees is built to create a robust predictive model. Each decision
tree is trained on a randomly selected subset of the training data and a random subset of
features, which helps reduce overfitting and increase model accuracy. During training, the
decision trees learn to make predictions by partitioning the feature space into smaller regions
based on the values of the input features.

To make predictions with RFR, the algorithm combines the predictions of all individual decision
trees in the ensemble, as illustrated in Figure 15. The final prediction is determined by averaging
or taking the median of the predictions from the individual trees, depending on the specific
regression problem. This aggregation process helps to reduce the impact of outliers and noise,
leading to more stable and accurate predictions.

Figure 15. Scheme of Random Forest.

Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) are machine learning models inspired by the structure and
function of biological neural networks (Hagan et al. 2014). As shown in Figure 16, ANNs consist
of an input layer, an output layer, and one or more hidden layers in between. Each neuron in the
input layer receives an input signal transmitted through the network via weighted connections
between neurons. The neurons in each hidden layer perform a non-linear transformation on the
input signal, and the output of each neuron is determined by an activation function, such as a
sigmoid or ReLU function. The output layer produces the final output of the network.

Figure 16. Scheme of an ANN.

One of the key features of ANNs is that they are feedforward networks, meaning that
information flows in only one direction, from the input layer to the output layer. This prevents
cycles or loops in the network and ensures that the network's output is well-defined for a given
input. As an example, the outputs of a three-layer ANN are given by

𝑦𝑖 = 𝑓 (∑ 𝑤𝑖𝑗𝑓 (∑ 𝑣𝑗𝑘𝑥𝑘 + 𝑏𝑣𝑘

𝑘

) + 𝑏𝑤𝑖

𝑗

) (11)

where 𝐱 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝒚 = {𝑦1, 𝑦2, … , 𝑦𝑚} are the input and output vectors, 𝐰 and 𝐯 are
the interconnection weights, 𝐛 represents the bias (or threshold) terms and f is the transfer
function, usually a sigmoid function. The training of an ANN involves adjusting the weights and
biases of the connections between neurons so that the network produces accurate outputs for
a given set of inputs. This is typically achieved through a process called backpropagation, which
involves calculating the error between the network's output and the desired output, and then
propagating this error back through the network to adjust the weights and biases. Training aims
to minimize the difference between the network's output and the desired output, usually
measured using a loss function such as mean squared error. Once trained, the network can
make predictions on new, unseen data.

Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a heuristic optimization technique inspired by the social
behavior of birds flocking or fish schooling. Introduced by Eberhart and Kennedy in 1995
(Eberhart and Kennedy 1995), this algorithm simulates the collective behavior of a swarm to
search for optimal solutions in a multidimensional space.

A 'swarm' in PSO comprises potential solutions to a given problem, each termed as a 'particle'.
Each particle has a position representing a potential solution and a velocity dictating the
change in position over iterations. The particles 'fly' through the solution space by adjusting

their positions based on their own best-known position and the global best-known position of
the swarm.

The particles are randomly initialized with positions and velocities. Then, the fitness of each
particle (i.e., the quality of the solution it represents) is evaluated using a predefined objective
function. Each particle updates its velocity and position based on a combination of its historical
best position, the swarm's best position, and some stochastic elements. Specifically, the new
velocity and position are updated using the formula:

𝑣𝑖 = 𝑤𝑣𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖)
𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖

 (12)

Where 𝑣𝑖 denotes the ith particle's velocity, while 𝑤 acts as an inertia weight that moderates its
momentum. The coefficients 𝑐1 and 𝑐2 represent cognitive and social scaling factors,
respectively. Both 𝑟1 and 𝑟2 are random values selected from the interval [0,1]. The terms 𝑝𝑏𝑒𝑠𝑡,𝑖
and 𝑔𝑏𝑒𝑠𝑡 refer to the ith particle's optimal historical position and the swarm's overall optimal
position, respectively. The symbol 𝑥𝑖 indicates the ith particle's current position. The PSO
process concludes either upon reaching a predetermined maximum number of iterations or
when specific conditions are satisfied, such as a negligible variation in 𝑔𝑏𝑒𝑠𝑡 over consecutive
iterations.

Due to its simplicity, flexibility, and robustness, PSO has been applied to a wide variety of
optimization problems, including function optimization, neural network training, clustering,
and many others (Poli, Kennedy, and Blackwell 2007).

