
   

Supplementary Material 

1 Dataset  

1.1 CMNIST 

We created CMNIST, a colored version of MNIST, by assigning one color (out of the four colors: 
blue, white, green, and red) to MNIST images. CMNIST consists of 120,000 training data and 4,000 
test data images. The number of images for each color and numerical class in the dataset is presented 
in Tables S1 and S2. 

 

Table S1. The number of images for each color class in the CMNIST dataset. 

 Blue White Green Red 

Training 30,000 30,000 30,000 30,000 

Test 1,000 1,000 1,000 1,000 

 

Table S2. The number of images for each numerical class in the CMNIST dataset. 

 1 2 3 4 5 6 7 8 9 

Training 15,200 13,092 13,588 12,940 12,028 13,188 13,780 12,796 13,388 

Test 556 508 460 488 388 372 420 388 420 

 

1.2 OSCN 

The number of images for each shape class in the OSCN dataset are shown in Table S3. The numbers 
of images for each color and numerical class in the OSCN dataset is same as those of the CMNIST 
dataset. 

 

Table S3. The number of images for each shape class in the OSCN dataset. 
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 Cross Square Triangle 

Training 39,929 40,294 39,777 

Test 1,337 1,381 1,282 

 

1.3 CMNIST-OSCN 

This dataset contains 120,000 image pairs. Each pair contained a 28x28-pixel image from CMNIST 
and a 32x32-pixel image from OSCN. To create the CMNIST-OSCN, we randomly assigned a 
corresponding OSCN image to each CMNIST image. For example: if the CMNIST image depicts a 
Zhite 3, ³Zhite 3 cross,´ ³Zhite 3 triangle,´ or ³Zhite 3 squares´ are the corresponding OSCN 
images since the\ share ³Zhite 3.´  As a result of this process, training (120,000 pairs) and test 
(4,000 pairs) datasets were constructed. In the analyses of generative ability (reconstruction and 
cross-generation task) and latent embeddings, 128 images randomly sampled from test dataset were 
utilized. 

 

2 Model Implementation 

2.1 Multi- and single-modal Model 

The original implementation of the MMVAE (https://github.com/iffsid/mmvae) was used for the 
overall model structure. Based on this, we tailored the encoders and decoders for each modality. For 
the CMNIST, the encoder comprises a single layer with an input/output size of 2,352 
(=3x28x28)/400, three layers with an input/output size of 400/400, and one layer with an input/output 
size of 400/20 (Table S4). Similarly, for the OSCN, the encoder comprises a single layer with an 
input/output size of 3,072 (=3x32x32)/400, three layers with an input/output size of 400/400, and one 
layer with an input/output size of 400/20 (Table S5). The decoders have the reversed structures of the 
corresponding encoder. We determined these model architecture and parameter settings through a 
parameter search conducted in the preliminary experiments. Objective function was calculated using 
DReG (a doubly reparameterised gradient) estimator instead of evidence lower bound (Shi et al., 
2019).  

 

Table S4. Encoder architecture of the MMVAE model for the CMNIST images. 

FC and ReLU represent a fully connected layer and rectified linear unit, respectively. 

 Input shape Output shape 
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FC and ReLU 2,352 400 

FC and ReLU 400 400 

FC and ReLU 400 400 

FC and ReLU 400 400 

FC 400 20 

 

Table S5. Encoder architecture of the MMVAE model for the OSCN images.  

FC and ReLU represent a fully connected layer and rectified linear unit, respectively. 

 Input shape Output shape 

FC and ReLU 3,072 400 

FC and ReLU 400 400 

FC and ReLU 400 400 

FC and ReLU 400 400 

FC 400 20 

 

2.2 Classifier model 

To quantitatively analyze whether the networks generate and reconstruct images with accurate 
number labels, we constructed a classifier model. Two classifier models are implemented using 
artificial neural networks which can predict the numbers represented by given images of the OSCN 
and CMNIST datasets. The classifier shares the same architecture as the encoder of single-modal 
model, with the addition of a fully connected layer predicting number labels at the end. A single 
classifier model for each modality (OSCN and CMNIST) was trained independent of the MMVAE 
and VAE model. The dataset for training and test of classifiers was the same as MMVAE. The 
accuracies at the end of training are 1.000 and 0.977 in the OSCN and CMNIST datasets, 
respectively. 

 

3 Evaluation Method 
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3.1 Visualization through dimensionality reduction 

To visualize the latent space (originally 20 dimensions) in 2-dimensional space, we used a 
dimensionality reduction algorithm called t-distributed Stochastic Neighbor Embedding (t-SNE) (van 
der Maaten & Hinton, 2008). This algorithm can capture similarities and dissimilarities in a high-
dimensional space and produce a mapping to low-dimensional spaces in such a way that the 
relationships between points are preserved. The perplexity parameter was set to 20.  

 

3.2 Silhouette Coefficient 

Silhouette coefficient measures the quality of clustering, and it ranges from -1 to 1 (the higher the 
better). For point p, the silhouette value is defined as:  

𝑠ሺ𝑝ሻ  ൌ  
𝑏ሺ𝑝ሻ െ 𝑎ሺ𝑝ሻ

𝑚𝑎𝑥ሼ𝑎ሺ𝑝ሻ, 𝑏ሺ𝑝ሻሽ
 

where 𝑎ሺ𝑝ሻ is the average distance between 𝑝 and all other points in the cluster to which 𝑝 belongs, 
and b(p) is the smallest average distance between 𝑝 and points in other clusters. The value is high 
when the points in the same cluster are located close together and the points in different clusters are 
located remotely. We calculated the silhouette coefficient for each data point and the average across 
all points were used for clustering quality of each model. 

 

3.3 Correlation Coefficients 

Firstly, we computed the averages of the latent embeddings for each true number class when images 
were inputted into the neural network models. The inputs consisted of 128 randomly selected images 
from the test datasets. Subsequently, we determined the distances between number classes (e.g., the 
distance between 1 and 3) and the distances between the averaged latent embeddings of each number 
class (e.g., the distance between averaged latent embeddings when images representing 1 and 3 were 
used). The distance was defined using L2 norm. These distances were calculated for all possible 
combinations. Finally, the correlations between both sets of distances were employed as indicators of 
the quality of the learned number sense. 

 

3.4 Arithmetic Task 

In the calculation of success rate in arithmetic task, we used all expression patterns of x + y - z, 
which satisfy the following conditions. 

x x, y, z are integers. 
x 1 <= x, y, z <= 9 
x 1 <= x + y - z <= 9 
x x is not z 
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As a result of this procedure, 408 expressions were created. The numbers of true answers 
were as follows, in order from 1 to 9: 36, 43, 48, 51, 52, 51, 48, 43, and 36. Because one image was 
generated for one expression, the 408 images were analyses for each model. 

 

4 Supplementary Result 

4.1 Nonlinearity in latent representations 

In the quantitatiYe anal\sis of numerosit\, Ze emplo\ed Pearson¶s correlation coefficients, assuming 
linear relationships between variables. However, numerous studies have suggested that numerosity is 
encoded in neurons using logarithmic transformations rather than linear ones. In this supplementary 
analysis, we explored the possibility that the latent representations in the multimodal model are 
nonlinearly associated with numerosity. 

In calculating these correlation coefficients, the latent distance (e.g., the distance between the 
aYerage of points in the latent space belonging to ³2´ and that of ³5´) were measured using 
transformed latent spaces instead of original space. The applied nonlinear transformations included 
the natural logarithm, exponential, and power of two. Because the latent embeddings take values 
across the entire real number range, the minimum value of the averaged latent embeddings was added 
when applying a logarithmic transformation. 

We conducted a repeated-measure ANOVA with four levels (Figure S1). The results 
indicated significant differences between transformations (F(3, 42) = 125.67, p < 0.0001 in for the 
OSCN images, and F(3, 51) = 8.15, p = 0.0002 for the CMNIST images). Post-hoc analysis 
demonstrated that the correlation coefficients derived from the original latent spaces were either 
equivalent to or greater than those obtained from transformed spaces in the OSCN dataset (t(14) = 
42.15; p < 0.0001 at original > log, t(14) = 16.80; p < 0.0001 at original > exp, t(14) = 11.93; p < 
0.0001 at original > pow). Similar findings were observed in the CMNIST dataset (t(17) = 2.61; p = 
0.0185 at original > log, t(17) = 2.83; p = 0.0115 at original > exp, t(17) = 3.99; p = 0.0009 at 
original > pow). 

The result suggests that latent embeddings of multimodal models encode numerosity using a 
linear scale rather than a nonlinear scale. 
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Figure S1. Nonlinearity in latent representations 

Nonlinear transformation was applied to latent representations in analyzing correlation coefficiences 
between the latent distance and the class distance. The terms µlog¶, µe[p,¶ and µpoZ¶ in the figure 
represent the natural logarithm, exponential, and the power of two, respectively. The OSCN (A) and 
CMNIST (B) datasets. 

 

5 Supplementary Discussion 

 

Figure S2. Visualized and conceptual explanation for shared and private latent spaces. 

(A) When a neural network model learns numbers using only the CMNIST dataset, its latent space 
may be organized based on the shapes and colors of hand-written Arabic numerals. 

(B) When a neural network model learns numbers using only the OSCN dataset, its latent space may 
be organized based on the numbers, shapes and colors of objects. 

(C) When a neural network model learns numbers using the CMNIST and OSCN dataset, its latent 
space may be organized based on the shapes and colors of hand-written Arabic numerals in the 
CMNIST dataset and the numbers, shapes and colors of objects in the OSCN dataset. Numbers and 
colors carry more information than modality-specific properties since these attributes are present in 
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both datasets. Consequently, the latent space may primarily be organized using these modality-
general properties. 
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