

# Supplementary Material

# Isoprinosine as a foot-and-mouth disease vaccine adjuvant elicits robust host defense against viral infection through immunomodulation

Hyeong Won Kim<sup>1</sup>, Mi-Kyeong Ko<sup>1</sup>, Seokwon Shin<sup>1</sup>, So Hui Park<sup>1</sup>, Jong-Hyeon Park<sup>1</sup>, Su-Mi Kim<sup>1</sup>, Min Ja Lee<sup>1\*</sup>

<sup>1</sup>Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea

\* Correspondence: Min Ja Lee herb12@korea.kr



# Supplementary Table legends

Supplementary Table 1. List of primer sequences for qRT-PCR.



#### **Supplementary Figure legends**

Supplementary Figure 1. Cytotoxicity of isoprinosine measured by cell viability assay in BHK-21, LF-BK, ZZ-R, murine PECs and porcine PBMCs.

(A–E) Cell viability of BHK-21 (A); LF-BK (B); ZZ-R cells (C); murine PECs (D); and porcine PBMCs (E).

Data have been represented as the mean  $\pm$  SEM of triplicate measurements (n = 3/group). Statistical analyses were performed using one-way ANOVA with Dunnett's *post hoc* test.

# Supplementary Figure 2. Isoprinosine alone-mediated host defense in early stage of FMDV infection on mice.

C57BL/6 mice (6–7 weeks-old, n = 5/group) were administered intramuscularly an isoprinosine alone. Mice were challenged with FMDV O (100 LD<sub>50</sub> O/VET/2013) or FMDV A (100 LD<sub>50</sub> A/Malay/97) at 3 or 7 days post-injection (dpi) using an intraperitoneal injection. Survival rates and body weights were monitored for 7 days post-challenge (dpc) with the respective viruses. (**A**– **E**) experimental workflow (**A**); survival rates in 3 dpi challenged group with O/VET/2013 (**B**) or A/Malay/97 (**C**); changes in body weight 3 dpi challenged group with O/VET/2013 (**D**) or A/Malay/97 (**E**); survival rates in 7 dpi challenged group with O/VET/2013 (**F**) or A/Malay/97 (**G**); and changes in body weight 7 dpi challenged group with O/VET/2013 (**H**) or A/Malay/97 (**I**). Data are presented as mean  $\pm$  SEM of triplicate measurements (n = 5/group).

Supplementary Figure 3. FMD vaccine containing isoprinosine-mediated antibody titers by SP O ELISA using PrioCheck<sup>TM</sup> kit in pigs.



For the challenge experiments, FMDV type O and type A antibody-seronegative pigs (8–9 weeks old, n = 5-6/group) were administered FMD vaccine including FMDV type O (O PA2) and type A (A YC) antigen (15+15 µg/dose/mL, one dose for cattle and pig use) with Isoprinosine (1 mg/dose/pig), ISA 206 (oil-based emulsion, 50%, w/w), 10% Al(OH)<sub>3</sub>, and 150 µg Quil-A. One milliliter vaccine was prepared as a single dose and introduced into the animals via intramuscular (I.M.) injection. The positive control (PC) group and negative control (NC) group of pigs were treated with an equal volume of commercial FMD vaccine (O Primorsky+A Zabaikalski, ARRIAH-VAC<sup>®</sup> by FGBI "ARRIAH", Vladimir, Russia) and PBS, respectively, via the same route. Blood samples were collected at 0 and 28 days post-vaccination (dpv) in pigs for serological assays. Vaccinated pigs were challenged with FMDV type O (O/SKR/JC/2014) on the heel bulb at 10<sup>5</sup> TCID<sub>50</sub>/100 µL at 28 dpv. Data are represented as the mean ± SEM of triplicate measurements (n = 5-6/group). Statistical analyses were performed using two-way ANOVA followed by Tukey's *posthoc* test. \*\*\*\*p < 0.0001.



## Supplementary Table 1

| Torgot         | Forward/Povorso               | Sequence (5'- 3')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Length |
|----------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Target         | For ward/Keverse              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (mer)  |
| PIC I          | RIG-I F                       | Sequence (5'- 3')GCACCTCATACTTACAGCCCACCACAACCAGTAGGAGCACATTCCTCTACGACTGCATCACCAGTAATTGAAGGACAGGTTGAGCTTTGCACGATGGTCTCAGCTTTCAGCAGTGGGACCAAGAAGTACATGTCAAAGCCATGTCCAATGTGACAGCCCTCATTTCCCCATTCGAGATGACCCCCTGTGCACAAACTGGGTATCGCTATCATCACCAAGCAGGGACGCGTCCACGAACATCCGGTAACGACTCCATGTACACCGCTTCGGGCTTGAGGTAAGGTGTTTCGCTGCCAAAGAAGAAGGACATAGCGTTCAGACCTTCACCGTCATCTGCTCTCTGGGCTGTGTGCAACCACCACAATTCCAGAGGTTTCATTCCAGCCAGTGCGCCATTCAAAGGAGCATGGATCTGATGGCTTTGCGCTGGATAGCCAGTCTCATTGTTCAGGTTCATCTCTTTGGGCCAGTGGTCATCTCTTTGGGCCATCAGCTGCAGTCACAGAACGAACGAGTGCTGCAGTCACAGAACGAACGAGTGCTGCAGTCACAGAACGAACGAGTGCTGCAGTCACAGAACGAACGAGTGCTGCAGTCACAGAACGAACGAGTGCTGCAGTCACAGAACGAACGAGTG                                                             | 21     |
| KIG-I          | RIG-I R                       | CCACAACCAGTAGGAGCACAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21     |
| TLR9           | TLR9 F                        | TCCTCTACGACTGCATCACCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21     |
| ILK9           | TLR9 R GTAATTGAAGGACAGGTTGAGC | GTAATTGAAGGACAGGTTGAGCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24     |
| STAT1          | STAT1 F                       | TGCACGATGGTCTCAGCTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
|                | STAT1 R                       | CAGCAGTGGGACCAAGAAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
| STAT/          | STAT4 F                       | ACATGTCAAAGCCATGTCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
| 51A14          | STAT4 R                       | ATGTGACAGCCCTCATTTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
| MvD88          | MyD88 F                       | CCATTCGAGATGACCCCCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
| MyD88          | MyD88 R                       | TGCACAAACTGGGTATCGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
| TRY21          | TBX21 F                       | ATCATCACCAAGCAGGGACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
| ΙΔΛ2Ι          | TBX21 R                       | CGTCCACGAACATCCGGTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
| FOMES          | EOMES F                       | CGACTCCATGTACACCGCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
| LOWIES         | EOMES R                       | CGGGCTTGAGGTAAGGTGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
| NF rB          | NF-κB F                       | TCGCTGCCAAAGAAGGACAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
| IN <b>F-KD</b> | NF-κB R                       | AGCGTTCAGACCTTCACCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
| IFNa           | IFNa F                        | GCACCTCATACTTACAGCCCACCACAACCAGTAGGAGCACATTCCTCTACGACTGCATCACCAGTAATTGAAGGACAGGTTGAGCTTGCACGATGGTCTCAGCTTTCAGCAGTGGGACCAAGAAGTACATGTCAAAGCCATGTCCAATGTGACAGCCCTCATTTCCCCATTCGAGATGACCCCCTGTGCACAAACTGGGTATCGCTATCATCACCAAGCAGGGACGCGTCCACGAACATCCGGTAACGGGCTTGAGGTAAGGTGTTTCGCTGCCAAAGAAGAAGACATAGCGTTCAGACCTTCACCGTTCGCTGCCAAAGAAGGACATAGCGTTCAGACCTTCACCGTTGAAGGGGATCCAAAGTCCCTTGCAACCACCACAAATTCCAGAGGTTTCATTCCAGCCAGTGCGCCATTCAAAGGAGCATGGATCTGATGGCTTTGGGCCATCAGGTTCATCTCTTGGGGCCATCAGGTTCATCTCTTGGGGCCATCAGCTGCAGTCACAGAACGAGTGCCGCATCAAAGCAAGAACGAGTGCCGCATCAAAGCAAGAACGAGTGCCGCATCAAAGCAAGAACGAGTGCCGCATCAAAGCAAGAACGAGTGCCGCATCAAAGCAAGAACGAGTGCCGCATCAAATCTCAGGTGAT                                                              | 20     |
| IITING         | IFNa R                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20     |
| IENB           | IFNβ F                        | TGCAACCACCACAATTCCAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21     |
| ппр            | IFNβ R                        | GGTTTCATTCCAGCCAGTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
| IFNγ           | IFNγ F                        | GCCATTCAAAGGAGCATGGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21     |
|                | IFNγ R                        | CTGATGGCTTTGCGCTGGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     |
| Π 10           | IL-1β F                       | AGCCAGTCTTCATTGTTCAGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22     |
| 117-1h         | IL-1β R                       | TCATCTCTTTGGGGGCCATCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21     |
| Пб             | IL-6 F                        | CCACAACCAGTAGGAGCACAT<br>TCCTCTACGACTGCATCACCA<br>GTAATTGAAGGACAGGTTGAGCTT<br>TGCACGATGGTCTCAGCTTT<br>CAGCAGTGGGACCAAGAAGT<br>ACATGTCAAAAGCCATGTCCA<br>ATGTGACAGCCCTCATTTCC<br>CCATTCGAGATGACCCCCTG<br>TGCACAAACTGGGTATCGCT<br>ATCATCACCAAGCAGGGACG<br>CGTCCACGAACATCCGGTAA<br>CGACTCCATGTACACCGCTT<br>CGGGCTTGAGGTAAGGTGTT<br>CGGGCTTGAGGTAAGGACAT<br>AGCGTTCAGACCTTCACCGT<br>AGCGTTCAGACCTTCACCGT<br>TGCAACCACCACAATTCCAGA<br>GGTTTCATCCAGACCATGCA<br>GGCTTCAAGGAGCATGGAT<br>CGACTCCACGAACATCCAGA<br>CGACCACCACCACAATTCCAGA<br>CGCCATTCAAAGGAGCATGGAT<br>CTGATGGCTTTGCGCTGGAT<br>AGCCATCTCATGCGCTGGAT<br>CTGATGGCTTCATGCGCTGGAT<br>CTGATGGCTTCATGGGCCATCAG<br>CTGCAGTCACAGAACGAGTG<br>CCGCATCCACCACAAACGAGTG<br>CCGCATCCACACACAGAACGAGTG | 20     |
| 112-0          | IL-6 R                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20     |



# Supplementary Table 1 (continued)

| Target   | Forward/Reverse | Sequence (5'- 3')       | Length<br>(mer) |
|----------|-----------------|-------------------------|-----------------|
| IL-12p40 | IL-12p40 F      | GGAGTATAAGAAGTACAGAGTGG | 23              |
|          | IL-12p40 R      | GATGTCCCTGATGAAGAAGC    | 20              |
| IL-23p19 | IL-23p19 F      | CCATATCCAGTGCGGGGATG    | 20              |
|          | IL-23p19 R      | AGGCCTTGGTGGATCCTTTG    | 20              |
| IL-23R   | IL-23R F        | TCCCTCATTGCAAAGCACAA    | 20              |
|          | IL-23R R        | GCATCTCCTCTTGCAAGCAAAT  | 22              |
| IL-17A   | IL-17A F        | CTCGTGAAGGCGGGAATCAT    | 20              |
|          | IL-17A R        | GGTGTGCTCCGGTTCAAGAT    | 20              |
| CD80     | CD80 F          | TCAGACACCCAGGTACACCA    | 20              |
| CD00     | CD80 R          | GACACATGGCTTCTGCTTGA    | 20              |
| CD86     | CD86 F          | TTTGGCAGGACCAGGATAAC    | 20              |
|          | CD86 R          | GCCCTTGTCCTTGATTTGAA    | 20              |
| CD28     | CD28 F          | TCAAAGGAGTTCCGGGCATC    | 20              |
|          | CD28 R          | CTGAAGCAGGCGGGAGTAAT    | 20              |
| CD19     | CD19 F          | GGACGACAGACTTCCTGAGC    | 20              |
|          | CD19 R          | GTTCTGGCCCATCAGGATTA    | 20              |
| CD21     | CD21 F          | TGCCATGCCTACAAAGCTGA    | 20              |
|          | CD21 R          | GTAGTAACCAGGGCGGCATT    | 20              |
| CD81     | CD81 F          | TCAACAAGGACCAGATCGCC    | 20              |
|          | CD81 R          | GAGCGTCTCGTGGAAAGTCT    | 20              |
| HPRT     | HPRT F          | CCCAGCGTCGTGATTAGTGA    | 20              |
|          | HPRT R          | GCCGTTCAGTCCTGTCCATA    | 20              |



#### **Supplementary Figure 1**





#### **Supplementary Figure 2**





#### **Supplementary Figure 2 (continued)**





#### **Supplementary Figure 2 (continued)**





## **Supplementary Figure 3**

# 100 80 60 40 20 0 0 20 0 20 0 20 0 20 0 28 Days post vaccination (dpv)

SP O ELISA by PrioCheck<sup>™</sup> Kit

Negative control (NC)

- Positive control (PC)
- Experimental (PC+Isoprinosine)