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1 Supplementary Methods 

1.1 Measure drug–drug similarity 

According to the target feature descriptor of the drug, a drug can be encoded as a binary feature vector, 
where a 1 in the vector indicates that the drug is associated with the corresponding target, and a 0 
indicates that the drug is not associated with the corresponding target. Based on the target features of 
the drug, we calculate drug–drug similarities with the help of the Jaccard similarity coefficient (Deng 
et al., 2020). The two binary feature vectors ia and ja denote the target features of drug i and drug j , 
respectively, whose Jaccard similarity coefficients can be determined by 
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where | |i ja a denotes the number of elements that are 1 in the corresponding positions of ia and ja , 
and| |i ja a denotes the number of elements that are 1 in either the elements of ia or the corresponding 
ones of ja . [0,1]ijS denotes the similarity value between drug i and drug j . 

1.2 Measure disease–disease similarity 

We can use the MeSH information to measure the semantic similarities between two diseases. Each 
disease can be viewed as a hierarchical directed acyclic graph ( )DAG (Guo et al., 2020), in which nodes 
represent disease MeSH descriptors, and edges represent the relationship between the current node and 
its ancestor nodes. For a disease O , its DAG consists of disease O and all its ancestor diseases, which 
can be represented by ( ) ( ( ), ( ))DAG O N O E O , where ( )N O is the set of all ancestor nodes of O  
(including itself), ( )E O is the set of edges for which O has all relationships with its ancestors. The 
semantic value ( )OC d that a disease d in ( )N O contributes to disease O  is defined by the following 
formula: 
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where [0,1] is a contribution factor, as in the study by Wang et al. (2010), is set to 0.5, and the 

total semantic value of disease d in ( )N O contributing to disease O is defined as ( )( ) ( )  Od N ODV O C d . 
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According to the hypothesis that diseases with more common ancestors in the DAG tend to have higher 

semantic similarity, the semantic similarity between disease O and P is defined as follows: 
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where ( )PC d is the semantic value of disease d related to disease P , and ( )DV P is the total semantic 
value of disease d 's contribution to disease P . 

1.3 Experimental settings 

In this study, we conducted 10-fold cross-validation to evaluate the performance of the model. More 
concretely, all the known drug–disease associations that had been verified were randomly divided into 
10 approximately equal subsets. Each subset was taken in turn as test data, the remaining nine subsets 
were used as the training data, and 10% of the training data were randomly selected as the validation 
data. In each fold, a prediction model was built on the training data based on the known associations, 
its parameters were adjusted using the validation data, and then the prediction was implemented on the 
test data. To ensure that the results of 10-fold cross-validation were unbiased, we carried out 10 
independent 10-fold cross-validation experiments, and the average results were used to measure the 
model performance. 
To assess the accuracy of the RSML-GCN model, we used the receiver operating characteristic curve 
(ROC), which was plotted from two variables, the false positive rate and the true positive rate, resulting 
in the area under the curve (AUC) value, which can be applied to binary classification issues and has 
been extensively used in prior research (Wu and Flach, 2005). Because AUC cannot fully generalize 
the model performance, we presented a second evaluation metric, AUPR, which leverages the 
precision-recall (PR) curve to accurately reflect the actual performance of the prediction model (Zhao 
et al., 2021). There are far more drugs and diseases with no association than those with known drug–
disease associations. Here, AUPR was used as the primary metric for such class-imbalanced datasets 
(Flach and Kull, 2015). As the number of correctly predicted true positives reflects the ability of the 
model to identify positive and negative samples, especially when the number of positive samples is 
much smaller than the number of negative samples, Precision and Recall were also employed as 
indicators of model effectiveness. 

2 Supplementary Tables and Figures  

2.1 Supplementary Tables  

Supplementary Table 1. Statistics of the dataset. (In this study, we adopted two benchmark datasets 
to evaluate the performance of RSML-GCN. The first one is Cdataset, which corresponds to the gold 
standard dataset used in the work of (Zhang et al., 2018). The verified drug–disease association data is 
derived from the Comparative Toxicogenomics Database (CTD) (Davis et al., 2016), which is a 
publicly available database containing interaction information between drugs, diseases, genes, and 
functional phenotypes. The Cdataset contains 269 drugs and 598 diseases, with 18 416 drug–disease 
pairs with proven associations. In addition, drug-target information is collected from the DrugBank 
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database (Law et al., 2013), which is used as the characteristics of drugs. The characteristics of diseases 
are defined based on medical subject headings (MeSH), a subject glossary compiled by the National 
Library of Medicine as biomedical indexing, which provides semantic feature descriptors for diseases 
(Lipscomb, 2000). Therefore, we use Cdataset to comprehensively test the performance of our method. 
The second dataset Fdataset (Gottlieb et al., 2011) contains 1933 known drug–disease associations 
between 593 drugs obtained in DrugBank database and 313 diseases extracted from OMIM database.) 

Dataset Drugs Diseases Number of association 

Cdataset 269 598 18416 
Fdataset 593 313 1933 

 

Supplementary Table 2. Comparison of results of ablation experiments under 10 iterations of 10-fold 
cross-validation. 

Methods RSML RSML-GCN 

AUPR 0.8060 0.8580 
AUC 0.9220 0.9308 

 

Supplementary Table 3. AUPR and AUC performance of different methods in predicting diseases for 
new drugs. 

Methods DRWBNCF GRGMF LAGCN DRHGCN CMLDR RSML-GCN 

AUPR 0.2105 0.3727 0.2704 0.2599 0.3186 0.5555 
AUC 0.5382 0.6649 0.5572 0.6037 0.6424 0.6985 

 

Supplementary Table 4. AUPR and AUC performance of different methods in predicting drugs for 
new diseases. 

Methods DRWBNCF GRGMF LAGCN DRHGCN CMLDR RSML-GCN 

AUPR 0.3189 0.6890 0.5368 0.5373 0.6056 0.6196 
AUC 0.5239 0.8114 0.7287 0.7386 0.7771 0.7950 
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2.2 Supplementary Figures 

 

Supplementary Figure 1. The AUPR and AUC of RSML-GCN with different dimensional settings. 
 

 

Supplementary Figure 2. The recall and precision values of RSML-GCN on the benchmark dataset 
with different dimensional settings. 

 Supplementary Figure 1 and  Supplementary Figure 2 analyze the setting of parameter n . RSML-
GCN projects drugs and diseases into the unified metric vector space, which characterizes drugs and 
diseases from different perspectives (dimensions). The latent vector dimension controls the complexity 
of the model, so an overly large n may lead to overfitting of the model, while a smaller n can reduce the 
representational capacity of the model. To verify the effect of spatial dimensionality on model 
performance, we conducted experiments on different vector dimension n settings. The AUPR and AUC 
of the RSML-GCN model on the benchmark dataset are shown in  Supplementary Figure 1, and the 
performance of recalls and precisions in top-k prediction is shown in  Supplementary Figure 2. We 
found that as the vector dimension n increased, RSML-GCN became more effective, and the model 
performance tended to be stable when n was greater than 200 and then gradually declined. Thus, the 
choice of dimension n in [200, 300] was appropriate. Here, we set the parameter n to 250. 

 



 5 

 
Supplementary Figure 3. The AUPR and AUC for different γ settings in model prediction. 
 

 

Supplementary Figure 4. The recall and precision values of model top-k predictions under different 
γ settings. 

 Supplementary Figure 3 and  Supplementary Figure 4 analyze the setting of parameter . RSML-
GCN introduces hyperparameters to control the strength of the margin in drug-centric and disease-
centric learning. Here, we analyzed the impact of on the model performance and its settings on the 
dataset. When the latent space vector dimension was fixed to 250, we varied different values of .  
Supplementary Figure 3 shows the AUPR and AUC under different  settings, demonstrating that the 
best performance of the model corresponded to 10.  Supplementary Figure 4 further displays the results 
of RSML-GCN top-k prediction. It can be seen that when  was taken as 10, the result was the best, 
and then the prediction performance of RSML-G0CN decreased with the change of . Therefore, was 
recommended to be set to 10. 
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Supplementary Figure 5. The recall and precision values of different methods in top-k recommended 
drug indications on Cdataset. 

 

 

Supplementary Figure 6. The recall and precision values of different methods in top-k recommended 
drug indications on Fdataset. 
 

 
Supplementary Figure 7. Comparison of the recall and precision values of RSML with RSML-GCN 
in top-k recommended drug indications. 
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Supplementary Figure 8. The recall and precision values of RSML-GCN recommends top-k drugs 
for new diseases. 
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