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1 CODE

The code for the experiments is made available at https://github.com/coba-paper/code. The
settings files in the code also contain the full parameterizations of all experiments. Please see README.md
in the repository for details on how to run the experiments.

2 ADDITIONAL EXPERIMENTS AND DISCUSSION

This section provides some additional experiments and discussion that are not part of the main results, but
provide more intuition.

2.1 Detailed plots related to Experiment 4

Figure S1. Detailed plots related to Experiment 4.

Figure S1 shows the breakdown of the results of Experiment 4 for each value of B. For B = 15, there is
no clear pattern; this is because the budget is so small that they all tend to learn poor policies. But when we
increase B, we see that our algorithm performs better when the graph is the most squeezed – like we had
discussed in the main part of the paper. Further, in the most squeezed setting (lowest value of x-axis), our
algorithm’s difference from the next best algorithm is larger for smaller B, and decreases as B increases;
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this is because a larger budget reduces the advantage that our algorithm gains from better utilization of
information leakage.

2.2 Detailed plots related to Experiment 5

Figure S2. Detailed plots related to Experiment 5.

Figure S2 shows the breakdown of the results of Experiment 5 for each value of B. We see that for
each value of B, as DL

val(CA×X)
increases, regret decreases – similar to what happens in the aggregated plot.

Further, as B increases, 0 regret is achieved faster – again in line with expectations.

2.3 Detailed plots related to Experiment 7

Figure S3 shows the breakdown of the results of Experiment 7a for each value of B. For B = 15, there is
no clear pattern; this is because the budget is so small that they all tend to learn poor policies. But when we
increase B, we see that all algorithms perform worser when G does not match the true underlying causal
graph. Further, our algorithm continues retain its better performance over all baseline for all values of B.

2.4 Intuition for why EqualAlloc performs worse in Experiment 2

If we look at the results of Experiment 2, we see that that EqualAlloc performs worse only for low values
of B, and significantly improves its performance once B becomes 35.

To understand the intuition, first note that Experiment 2 captures the 80-20 rule (while randomizing other
aspects). It is easy to see that EqualAlloc overallocates to the lower-value 80% of contexts. PropToValue,
on the other hand, allocates more to the 20%, and therefore performs better for lower budgets (i.e., makes
better use of the small budget). However, as budget increases, PropToValue fails to explore well, causing
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Figure S3. Detailed plots related to Experiment 7a.

EqualAlloc to outperform it. MaxSum outperforms EqualAlloc in lower budgets because allocations
which allocate more to the higher-value contexts are also possible solutions for MaxSum, and therefore
on average it performs better than EqualAlloc which overallocates to the low-value contexts consistently.
However, as B becomes larger, we can see that EqualAlloc catches up.
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