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1 Supplementary Appendix SA - Switching between peak values and Fourier amplitudes 
and calculating the attenuation parameter as a function of frequency and time 

The current Supplementary Appendix provides the theoretical justification for the use of the 
Convolution Theorem on time-domain quantities like the peak values of a set of narrowband-filtered 
versions of a seismogram. A brief explanation of the way we quantify the time and frequency 
variations of the attenuation parameter is also provided, as well as the way we address causality 
issues. 

The method used here for the quantification of seismic attenuation as a function of time and 
frequency was developed by Malagnini et al. (2019), who modified one originally developed to study 
the scaling of regional ground motion (see Raoof et al., 1999, Malagnini et al., 2000, or Akinci et al., 
2001), and used it on a dataset of repeating earthquakes of the Parkfield segment of the SAF (Nadeau 
and McEvilly, 1995; Nadeau and McEvilly, 1999). The technique was subsequently improved by 
Malagnini & Parsons (2020) with an application on the same data set, and extensively tested by 
Malagnini et al. (2022) on a very large set of waveforms from the Central Apennines, showing its 
ability in detecting extremely small changes of the anelastic attenuation. Because of its sensitivity 
and accuracy, the method described here is especially suitable for our attenuation study. 

The Convolution Theorem is commonly used to write a general form for a predictive relationship for 
the ground motion:  
𝑙𝑜𝑔$% &𝑎()𝑓, 𝑟-./0 = 𝐴)𝑓, 𝑟-./ = 𝐸𝑋𝐶.)𝑓, 𝑟-./ + 𝑆𝐼𝑇𝐸-(𝑓) + 𝐷)𝑓, 𝑟-./,                       (1) 
where 𝑎)𝑡, 𝑟-./ is the time history recorded at the i-th station and excited by the j-th earthquake, 
and 𝑎()𝑓, 𝑟-./ is its Fourier amplitude spectrum. In (1), 𝐸𝑋𝐶.)𝑓, 𝑟-./ is an excitation term related to the 
j-th seismic source, 𝑆𝐼𝑇𝐸-(𝑓) is the site effect associated to the i-th seismic station, and 𝐷)𝑓, 𝑟-./ 
represents the effect of the crustal propagation (𝑟-. is the hypocentral distance of the i-th station).  
     
Note that (1) is in a form suitable for setting a linear inversion problem (in what follows we show 
that a minor modification of the crustal attenuation term is needed to stabilize it during the 
inversion). The only issue about the use of (1) is that the Fourier amplitudes of small signals are 
generally noisy, and one way to maximize the signal-to-noise ratio of the site, source and attenuation 
terms is to use peak values instead of Fourier amplitudes.     
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1.1 Quantitative description of the ground motion: from Fourier amplitudes to peak value  
Given a stationary, random time history 𝑎)𝑡, 𝑟-./ of length T, Random Vibration Theory (RVT, 
Cartwright and Longuet-Higgins, 1956) may be used to relate to its peak value: 
𝑃𝑒𝑎𝑘)𝑎(𝑡)/ ≈ 𝜂𝑎CDE,          (2) 
where 𝑎CDE is its RMS-average calculated over T, and 𝜂 = 𝜂(𝑚%,𝑚G,𝑚H) is a function of the three 
specified spectral moments of the filtered time history )𝑚I = ∫ 𝜔I|𝑎(𝜔)|GM

% 𝑑𝜔/.  
 
It is interesting to note that, in our case, RVT is applied to a filtered time history that is significantly 
different from zero only between 𝑡 = 0 (the direct S-wave arrival time) and 𝑡 = 𝑇, where T is the 
effective duration of the signal that follows the direct S-waves. We define T on each seismogram as 
the time elapsed after 5% of the cumulative energy has arrived, until the time the 75% of the 
cumulative energy is observed (Raoof et al., 1999).  
  
The Parseval equality relates the time-domain integral of the square of a time-series to the frequency-
domain integral of the square of its Fourier amplitude spectrum: 
∫ |𝑎(𝑡)|GPM
QM 𝑑𝑡 = ∫ |𝑎((𝑓)|GPM

QM 𝑑𝑓.         (3) 
Let us now express the RMS-average between 𝑡 = 0 and 𝑡 = 𝑇 of a windowed time-series using its 
Fourier amplitude spectrum: 

𝑎CDE = R∫ |S(T)|UV
W XT

Y
≈ R∫ |S((Z)|U[\

]\ XZ

Y
.         (4)  

 
We use the approximation sign above because in (4) we do not consider the distortion of the seismic 
spectrum due to the time-domain windowing. In practical applications, however, we compute the 
Fourier spectrum over the same finite window (0, 𝑇) of the RMS-average in time domain, and for 
this reason the equal sign may be used. Now suppose the amplitude spectrum is nonzero only within 
a certain frequency window, say between 𝑓$ and 𝑓G: 

R∫ |𝑎(𝑡)|GPM
QM 𝑑𝑡 = R2∫ |𝑎((𝑓)|GZU

Z_
𝑑𝑓.        (5) 

So now (4) is to be applied to a windowed time-series that have been narrowly bandpass filtered 
between 𝑓$ and 𝑓G, and is significantly different from zero only in the (0, 𝑇) time window. From the 
application of the Parseval equality to our filtered time history, we can rewrite (3) as: 

𝑎CDE = R∫ |S(T)|UV
W XT

Y
= `G∫ |S((Z)|UaU

a_
XZ

Y
.        (6) 

The filtering action allows us to use the equal sign in (6). In the present study, the observations used 
in the regressions of the Fourier amplitudes of the ground motion are: 
𝐴(𝑓) = 𝑙𝑜𝑔$%)𝑎(CDE(𝑓)|Z_

ZU/,          (7) 
where: 

𝑎(CDE(𝑓)|Z_
ZU = `G∫ |S((Z)|UaU

a_
XZ

ZUQZ_
.          (8) 

 
If the filter is narrowband, we can still apply the Convolution theorem and write: 
𝐴)𝑓, 𝑟-./ = 𝐸𝑋𝐶.(𝑓, 𝑟Cbc) + 𝑆𝐼𝑇𝐸-(𝑓) + 𝐷)𝑓, 𝑟Cbc, 𝑟-./,      (9) 
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where 𝐴)𝑓, 𝑟-./ is the rms-average of the Fourier amplitude spectrum excited by the j-th event, and 
recorded at the i-th station, between frequencies  𝑓$ and 𝑓G. The propagation term 𝐷)𝑓, 𝑟Cbc, 𝑟-./ 
takes into account the crustal attenuation as a function of frequency and hypocentral distance. We 
will explain later the role of the reference distance 𝑟Cbc  in the excitation and propagation terms of 
(9). 
 
Eq. (9) is used for the implementation of a linear regression. In our applications,  𝑓$ =

Zd
√G

, and 𝑓G =
𝑓f√2, where 𝑓f  is the central frequency of our bandpass filter. More precisely, 𝑓$ and 𝑓G are, 
respectively, the corner frequencies of an eight-pole high-pass Butterworth filter, and of an eight-pole 
low-pass filter.  
From equations (2):  

𝐴gbhi(𝑡) = 𝑙𝑜𝑔$%(𝜂) + 0.5𝑙𝑜𝑔$% l
∫ |S(T)|UV
W XT

Y
m.                 (10) 

In the frequency domain we can write: 

 𝐴(𝑓f) = 0.5𝑙𝑜𝑔$% l
G∫ |S((Z)|UaU

a_
XZ

ZUQZ_
m.                   (11) 

From (6), (10) and (11) we can write a predictive relationship for the peak value of the ground 
motion of a stationary time history that was narrowband-filtered around a central frequency : 
𝐴gbhi)𝑓f, 𝑟-./ = 𝐸𝑋𝐶gbhin(𝑓f, 𝑟Cbc) + 𝑆𝐼𝑇𝐸gbhio(𝑓f) + 𝐷gbhi)𝑓f, 𝑟Cbc, 𝑟-./.             (12) 
After some simple manipulation, we can explicitly describe the amplitudes measured in the 
frequency-domain (13), and in the time-domain (14), where 𝑇-. is the effective duration of the post-S-
wave signal of the individual seismogram (the seismogram excited by the j-th earthquake and 
recorded by the i-th station): 

𝐴)𝑓f, 𝑟-./ = 0.5𝑙𝑜𝑔$% p
G√G∫ |S((Z)|U√Uad

ad
√U

XZ

Zd
q;                  (13) 

𝐴gbhi)𝑓f, 𝑟-./ = 𝑙𝑜𝑔$% &𝜂-.)𝑓f, 𝑟-./0 + 0.5𝑙𝑜𝑔$% l
∫ rS)T,Zd,son/r

UVon
W XT

Yon
m.               (14) 

The advantage of using peak values is great, because they allow a huge enhancement of the signal-to-
noise (S/N) ratio. The idea is to use a bandpass filter narrow enough to isolate a specific central 
frequency 𝑓f , yet broad enough to allow the filtered time history a relatively sharp peak. 
  
A shallow set of filters (e.g. two-poles) would allow the contributions of a much wider bandwidth to 
the peak value, well beyond the two corner frequencies 𝑓$ and 𝑓G. Now suppose a sharp peak 
characterizes the Fourier amplitude spectrum outside the band defined by the two corner frequencies, 
yet close to one of them: possibly, the peak value resulting from a shallow bandpass filter would 
contain a significant contribution from frequencies very different from the central frequency, whereas 
the application of a sharp set of eight-pole filters minimizes the issues of spectral contamination. 
  
Equation (12) is cast in a matrix form (one equation for each observed peak value) that, after a 
constraint is pushed onto the site terms, another one is pushed onto the propagation term, and a 
smoothing constraint is pushed onto the propagation term, is inverted for all source, site, and 
propagation terms. The two constraints are the following: 
 ∑ 𝑆𝐼𝑇𝐸-(𝑓f) = 0uvwVx

-y$                       (15) 
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and:     
𝐷(𝑟 = 𝑟Cbc, 𝑓f) = 0,                      (16) 
for every central frequency 𝑓f . 
 
The mentioned smoothing constraint is forced on the propagation term once the latter is 
parameterized as a piecewise-linear function (regressions are performed in a logarithmic space), and 
constraint (16) effectively decouples the regional attenuation from the source and the site terms. 
Because source and site terms trade-off, constraint (15) is used to effectively map anything that all 
sites have in common onto all the source terms. We refer the reader to the studies by Malagnini et al. 
(2019) for a thorough analysis of the tradeoffs between the different terms of (12). 
     
A set of 20 central frequencies, equally spaced in a logarithmic space between 2 and 50 Hz, is chosen 
to explore the available bandwidth (see Table 1). 
  
1.2 The attenuation parameter 

The crustal propagation term of equation (8) at the frequency 𝑓f  can be thought in terms of the 
product between a geometric attenuation 𝑔)𝑟-./, and a non-geometric (anelastic) attenuation  

&𝑒𝑥𝑝 |− ~Zd
��v(Zd)

𝑟-.�0:                                                                                                                          (17) 

𝑑)𝑟Cbc, 𝑟-., 𝑓f/ =
�)son/
�(s�x�)

𝑒𝑥𝑝 �− ~Zd)sonQs�x�/
��v(Zd)

�,                  (18) 

where 𝛽 is the S-wave velocity, 𝑄EQ$(𝑓f) is what we call the attenuation parameter. For the linear 
inversion:  
𝐷)𝑟Cbc, 𝑟-., 𝑓f/ = 𝑙𝑜𝑔$%�𝑑)𝑟Cbc, 𝑟-., 𝑓f/�.                                                                                      (19) 
 
Another high-frequency anelastic attenuation filter is commonly used in strong-motion seismology, 
on top of the filter (17): 
)𝑒𝑥𝑝�−𝜋𝜅%o𝑓f�/.                      (20) 
There is a specific filter (20) for each recording station and, consequently, a specific high-frequency 
attenuation parameter 𝜅%o , but in our case we do not need to explicitly take it into account because the 
regressions force it onto the i-th site term. 
  
Once a regression is performed on a set of 𝑁b�YE consecutive earthquake adjacent in time, and a 
second reference distance 𝑟Cbc_ is chosen, the attenuation parameter may be obtained as:  

𝑄EQ$(𝑓f) =
�|���_W)�(s�x�)/Q���_W&�)s�x�_/0Q�)s�x�,s�x�_,Zd/�

�~Zd)s�x�_Qs�x�/���_W��
.                 (21) 

If we associate a specific time 𝑡$ to the attenuation parameter (21) (for example, the time of 
occurrence of the first earthquake of the set of 𝑁b�YE consecutive events in the specific time window 
under analysis): 
𝑄EQ$(𝑓f) → 𝑄EQ$(𝑡$, 𝑓f).                     (22) 
From (21) we see that the attenuation parameter is effectively obtained from a spectral ratio 
approach, using the spectral amplitudes inferred at two reference distances.         
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1.3 Obtaining a time history of the attenuation parameter 
  
A new set of 𝑁b�YE earthquakes are selected by shifting one earthquake towards more recent times, 
and adding the next adjacent event that is available in our dataset. A new value for the attenuation 
parameter can be obtained and associated to time (the time of occurrence of the first earthquake of 
the new set of 𝑁b�YE earthquakes). In this study, we chose 𝑁b�YE = 30.  
  
Multiple choices are possible relatively to the time to be associated to the time window defined by 
the specific set of 𝑁b�YE earthquakes: (i) the time of occurrence of the first earthquake; (ii) the time 
of the last earthquake, (iii) the average time of all earthquakes; (iv) the median time of all 
earthquakes.  
     
1.4 Causality issues 

Due to the finite duration of the time window of the 𝑁b�YE consecutive earthquakes, the time of a 
sharp transition between two different regimes (e.g., before and after a mainshock) needs to be 
treated in a way such that the causality of the changes of the attenuation parameter is preserved. The 
only way to do so within the described setting is to separate the dataset in two, and to run two sets of 
regressions on two subsets that do not have any earthquake in common. Such an approach is used 
here to separate the pre-mainshock dataset from the post-mainshock one. The separation date is 
September 28, 2004.   
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2 Supplementary Figures 

 

Supplementary Figure S1. Stacked-averaged attenuation parameter on the two sides of the fault, in 
two mid-range frequency bands. The Figure shows the same time windows of Figure 4, but no 
splitting is observed before the occurrence of the Parkfield mainshock. 
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Supplementary Figure S2. Variance calculated on subsets of 40 data points of the stacked time 
histories of Figure S1. Note that the San Simeon earthquake completely shuts off the variance of the 
attenuation time histories on both sides of the fault. A substantial drop in variance is also observed on 
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the Pacific side of the fault starting in 2020-2021 (the quasi-periodic variance peak disappeared 
suddenly after a series of peaks having increasing amplitudes). 

 

Supplementary Figure S3. Average attenuation parameter )𝑄EQ$(𝑓)/ calculated for the North 
American side (black) and for the Pacific side of the SAF (red), in the indicated time windows (2001-
2004 and 2005-2019). Beyond 8-10 Hz, all curves roughly describe the same power-law that is 
consistent with what is usually thought about the frequency dependence of the quality factor: 
𝑄E(𝑓) = 𝑄% &

Z
ZW
0
�
, with 𝜂 < 0.5 in active regions, and  𝜂 > 0.5 in stable environments (Raoof et al., 

1999; Malagnini et a., 2007). Below 8-10 Hz, all curves show a flattening that is stronger for the 
attenuation parameter calculated on both sides of the SAF in the 2001-2004 time window. Such 
behavior is consistent with the fact that the ground motion in the 2-8 Hz band is rich with surface 
waves, if not dominated by them. In fact, the attenuation parameter is obtained by the extraction of 
the body-wave-like geometric contribution from the total attenuation, and surface waves are 
characterized by a much lower geometric attenuation than body waves. It is interesting to note that 
the attenuation parameters computed in the 2005-2019 time window (after the 2004 mainshock) are 
higher than the corresponding parameters relative to the pre-mainshock. 

 


