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SA1 TECHNICAL DETAILS

Each IBM device consists of several connected qubits with available single and two-qubit gates. The
sequence of the gates is user-defined. The provided interface allows some fine tuning, like the delay
of the gate, using barriers or performing additional resets. Physically the qubits are transmons [1], the
artificial quantum states existing due to superconductivity and capacitance (interplay of Josephson effect
and capacitive energy). In principle, the transmon has more than two states but the gates’ implementation
is tailored to limit the working space to two states. The time of decoherence (mostly due to environmental
interaction) is sufficiently long to perform a sequence of quantum operations and read out reliable results.
The ground state |0⟩ is the lowest energy eigenstate of the transmon, which can be additionally assured by
a reset operation. Gates are time-scheduled microwave pulses prepared by waveform generators and mixers
(of length 30− 70ns with sampling at 0.222ns) , taking into account the frequency equivalent to the energy
difference between qubit levels [2] (about 4− 5Ghz). The readout is realized by coupling the qubit with a
resonator whose frequency depends on the qubit state and measure the phase shift of the populated photons
[2, 3].

To run the experiment we had to prepare a script controlling the jobs sent to the computer, lists of
individual circuits describing the sequence of the gates and possible parameters, the number of shots,
i.e. the number of repetitions of the list of circuits, limited by 8192, later extended to 20000, 32000 and
100000, depending on the device. Each device has some limit on the number of circuits per job. We used
lima, jakarta and bogota, as they offered 900 circuits per job running about 100 jobs (later lima and jakarta
reduced to 100 and 300, respectively). We also used armonk which is the only single-qubit device, but
it offers only 75 circuits per job. In this case, to obtain significant statistics, we had to run more than
1500 jobs. Each circuit consisted of a sequence of gates S and Sθ for θ = jπ/8, j = −7,−6, ..., 7, 8 (16
even-spaced values) with additional resets at the beginning and after the readout. This eliminates the effect
of daily calibrations. The typical circuit is depicted in Fig. 1 with the actual pulse sequence shown in Fig. 2.
To avoid memory effects, we shuffled randomly the values of θ individually in each job.
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SA2 RESULTS FROM BOGOTA

The results from the experiment on bogota, Fig. S1 revealed a global phase shift. We are not aware of its
reason which can be either due to a wrongly programmed gate or a transpiling error when the script is
translated to physical instruction to be performed sequentially on the gates. Nevertheless, the deviations are
consistent with other devices if the shift is taken into account. We stress that we used exactly the same
script as for the other devices and bogota was neither the first nor the last of the devices to test.
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Figure S1. The results of the tests n = 1 on bogota, with 100 jobs, 8192 shots per job, and 56 circuits per
angle. Notation as in Fig. 3

SA3 FIRST-ORDER DEVIATIONS FROM IDEAL GATE MODELS

For a general gate (6) we define [4]

Uθ(ϕ) = expϕ(eiθ |0⟩ ⟨1|+ e−iθ |1⟩ ⟨0|)/2i =
(

cosϕ/2 −ieiθ sinϕ/2

−ie−iθ sinϕ/2 cosϕ/2.

)
. (S1)

The correction in the first order of ϵ to the gate operation (6) reads then

δ(Sn
θ ) = Sn

θ

∫ nπ/2

0
U †
θ (ϕ)

(
0 −iϵeiθ

−iϵ∗e−iθ 0

)
Uθ(ϕ)dϕ/2 = Sn

θ

∫ nπ/2

0
H ′

θ(ϕ)dϕ/2i, (S2)

with

H ′
θ(ϕ) =

(
ϵi sinϕ (ϵr + iϵi cosϕ)e

iθ

(ϵr − iϵi cosϕ)e
−iθ −ϵi sinϕ

)
, (S3)

assuming ϵ(θ, ϕ + π/2) = ϵ(θ, ϕ) (periodicity in ϕ with respect to π/2 as the gates are identical). The
θ-dependent correction to the probability pn(θ) = | ⟨1|Sn

θ S |0⟩ |2 reads

δpn(θ) = −2Re ⟨0|S†S†n
θ |0⟩ ⟨0| δ(Sn

θ )S |0⟩ . (S4)
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Using (4) we calculate

ρ = S |0⟩ ⟨0|S† =

(
1 i

−i 1

)
/2. (S5)

Denoting
ρnθ = S†n

θ MSn
θ , (S6)

for M = |0⟩ ⟨0| we get explicitly from (1), (2) and (4)

ρ0θ =

(
1 0
0 0

)
,

ρ1θ =

(
1 −ieiθ

ie−iθ 1

)
/2,

ρ2θ =

(
0 0
0 1

)
, (S7)

ρ3θ =

(
1 ieiθ

−ie−iθ 1

)
/2,

with ρn+4,θ = ρn,θ. Substituting (S2), (S5) and (S6) into (S4) we can write the deviation from (3)

δpn(θ) =

∫ nπ/2

0
dϕReTr iρ1ρnθH

′
θ(ϕ). (S8)

Since ρ1, ρnθ, H ′
θ(ϕ) are Hermitian, we get

δpn(θ) =

∫ nπ/2

0
dϕReTr iρnθ[H

′
θ(ϕ), ρ1]/2, (S9)

with the commutator of H ′
θ given by Eq.(S3) with ρ1 given by Eq. (S7)

i[H ′
θ(ϕ), ρ1] =

(
ϵr cos θ − ϵi cosϕ sin θ −ϵi sinϕ

−ϵi sinϕ −ϵr cos θ + ϵi cosϕ sin θ

)
, (S10)

which allows us to derive the final result (7) by plugging ρn given in Eq. (S7) to the trace in Eq.(S9).

SA4 BENCHMARK

In addition to the main tests, we have checked on lagos how the amplitudes of the fit, i.e. coefficients A
and B decrease with an increased number n of Sθ gates, in analogy to the standard benchmark tests [5, 6].
The decay of A and B over the number of gates corresponds to the decoherence induced by gates and
environment. For an odd number n the signs of A and B alternate every two Sθ gates. We estimate the
error-per-gate r with a fit to the formula√

A2 +B2 = (1− r)nD. (S11)

(For even n the ideal expectation is A = B = 0, so we don’t include these data.)
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Figure S2. The decay of the amplitude
√
A2 +B2 with the number n of gates (n is odd). By least squares

fit to the formula S11 we estimated r ≃ 7 · 10−4. The test has been run on lagos with n = 63 jobs, each
corresponding to a subsequent number of Sθ, 8192 shots per job and 56 circuits per angle.

We found that the error gets accumulated as confirmed by checking the fit after n = 62 and n = 63
Sθ, see Fig.S3 and cannot be explained by the first order deviations (7) meaning that other effect may be
comparable. Nevertheless, the normalized error per gate, r ∼ 7 · 10−4, estimated from the data presented
in Fig. S2, remains smaller than our deviations. We conclude that they must have a different origin. In
addition, if the error is caused by leakage to other states then it is unlikely that it will cause θ-dependent
deviation of the same order (at least second order, see Supplementary Appendix SA4).

SA5 PARAMETER-INDEPENDENT DECOHERENCE

The following reasoning shows that first order correction to the gate channels keeps equal deviations
δp1 ≃ δp5. Introducing standard 2× 2 Pauli matrices σi, i = 1, 2, 3 and σ0 denoting identity, every qubit
state can be written ρ = n · σ/2, with n21 + n22 + n23 ≤ 1, n0 = 1 (equality for pure states). Each quantum
channel Řρ is equivalent to R · n with some 4× 4 matrix R, whose first row reads 1, 0, 0, 0. In the unitary
case, R contains a rotation matrix in the subspace i = 1, 2, 3. For the ideal gate Sθ, acting in the sense of a
quantum channel on density matrices, it is a π/2 rotation with eigenvalues 1, ±i.

The measurement probability reads pk = TrMSk
θ ρ = m · Sk

θn with M = m · σ. For a simple, diagonal
measurement we specify m1 = m2 = 0, while we keep a general initial state n.

We use a polar decomposition of the gate matrix Sθ = UθV DV −1U−1
θ , where

Uθ =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 , V =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 i −i

 , Dθ =


1 0 0 0
0 1 0 0
0 0 i 0
0 0 0 −i

 . (S12)

The first order contribution to the difference of deviations from the ideal case comes only from corrections
of eigenvalues of Sθ, i.e.

p5 − p1 = 4m · UθV δDθV
−1U−1

θ n, (S13)
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Figure S3. The fit to (3) (red dashed line) and deviations (blue dashed line) after n = 62 (upper) and
n = 63 (lower) Sθ, in the same experiment on lagos as in Fig. S2.

where

δDθ =


0 0 0 0
0 ηθ 0 0
0 0 ϵθ 0
0 0 0 ϵ∗θ

 (S14)

contains empirical parameters ηθ ∈ R, ϵθ ∈ C, describing general linear deviations of eigenvalues of Sθ.
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Assuming preparation of a ground state |0⟩ initially rotated by π/2 around x-axis, i.e.

n1 = n3 = 0 (S15)

we get p1 − p5 = 4m3n2Imϵθ cos θ. There is no difference between p1 and p5 for purely unitary evolution,
in linear order in perturbation. As long as ξ and η remains θ-independent, p1 − p5 remains a combination
of one, cos θ, and sin θ as in (3), even for initial n deviating from the ideal case (S15).

Furthermore, a combination of 1, 5, and 9 gates gives

p1 − 2p5 − p9 = 4m · UθV (δDθ)
2V −1U−1

θ n, (S16)

which makes it of the second order in ϵ.

A dissipative part can be derived from a generic Lindblad equation

∂tρ = i[ρ,H(t)]/ℏ+
∑
m

(LmρL†
m − {L†

mLm, ρ}/2). (S17)

It covers depolarization, phase damping, and relaxation processes [4], which can be described by L = λσ3
or L = λσ± with 2σ± = σ1 ± iσ2. For all such combinations, we can write ∂tn = Hn+ Ln, where

L =


0 0 0 0
0 A 0 0
0 0 A 0
B 0 0 C

 , (S18)

with some empirical constants A, B, C, while H is an infinitesimal rotation. During the gate operation, in
the first approximation, we can simply rotate the 1, 2 subspace basis by Uθ, same as in (S12), H = UθEU−1

θ
with some θ-independent operation E. As L commutes with Uθ, the corrections to eigenvalues of Sθ will be
then also independent of θ. As we mentioned earlier, in this case, the difference δp1 − δp2 is incorporated
in the fit (3).

SA6 CORRECTIONS FROM HIGHER STATES

We denote the basis states |n⟩, n = 0, 1, 2, ... and set ℏ = 1. The generic Hamiltonian

H =
∑
n

ωn|n⟩⟨n|+ 2 cos(ωt− θ)V̂ (t), (S19)

consists of its own energy levels (first term) and the external influence given by frequency ω, phase shift θ,
and the time-dependent pulse V̂ (the second term). In principle free parameters ω, θ and V̂ (t) can model a
completely arbitrary evolution. However, the practical realization of gates implies the separation of V̂ into
the ideal part and deviations. In this way, we can estimate deviations by perturbative analysis. In addition,
we set ω0 = 0, ω1 = ω (resonance), ω2 = 2ω + ω′ (anharmonicity, i.e. ω′ ≪ ω, here about 300Mhz). We
restrict to the states 0, 1, 2 which should contribute to the largest corrections. Rotation and phase can be
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incorporated into the definition of states, |n⟩ → e−in(θ+ωt)|n⟩. In the new basis

H ′ =

 2 cos(ωt− θ)V00 (1 + e−2i(θ+ωt))V01 (e−i(θ+ωt) + e−3i(θ+ωt))V02
(1 + e2i(ωt+θ))V10 2 cos(ωt+ θ)V11 (1 + e−2i(θ+ωt))V12

(e−i(θ+ωt) + e3i(ωt+θ))V20 (1 + e2i(ωt+θ))V21 2 cos(ωt+ θ)V22 + ω′

 . (S20)

We split H ′ = HRWA +∆H into the Rotating Wave Approximation (RWA) part

HRWA =

 0 V01 0
V10 0 V12
0 V21 ω′

 , (S21)

and correction

∆H =

 2 cos(ωt+ θ)V00 e−2i(θ+ωt)V01 (e−i(θ+ωt) + e−3i(θ+ωt))V02
e2i(ωt+θ)V10 2 cos(ωt+ θ)V11 e−2i(θ+ωt)V12

(e−i(θ+ωt) + e3i(ωt+θ))V20 e2i(ωt+θ)V21 2 cos(ωt+ θ)V22

 . (S22)

Evolution due to RWA reads

U(t) = T exp

∫ t

−∞
HRWA(t

′)dt′/i. (S23)

The full rotation is U(+∞). Only the state |2⟩ contains the second harmonics e±2iθ after restoring original
phases.

The 1st order correction to U reads

∆U = U(+∞)

∫
dtU †(t)∆H(t)U(t)/i. (S24)

All terms in ∆H with θ, contain eiωt, too, which exponentially damps slow-varying expressions, e.g.∫
eiωte−t2/2τ2dt ∼ e−ω2τ2/2. (S25)

The 2nd order correction reads

∆2U = −U(+∞)

∫
dtU †(t)∆H(t)U(t)

∫ t

dt′U †(t′)∆H(t′)U(t′). (S26)

Most of components get damped exponentially, except when ∆H(t) contains eikωt and ∆H(t′) contains
e−ikωt, k = 1, 2, 3, but even then kθ gets canceled Therefore the nonnegligible part of ∆2U is independent
of θ (compare with Bloch-Siegert shift [8]), and can be observed as small heating, giving leakage at the
level 10−5 [9]. Due to a very short sampling time, dt = 0.222ns, stroboscopic corrections to RWA [10] can
be neglected, too.
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SA7 I/Q IMBALANCE

In reality, the amplitude is a mixture of in-phase and out-of phase (quadrature) components, which may
show some imbalance [7] when mixing with local oscillator of frequency ω,

V (t) = VI(t) cos(ωt) + VQ(t)((1 + ε1) sin(ωt) + ε2 cos(ωt)), (S27)

with
VI(t) = Ω(t) cos θ, VQ(t) = Ω(t) sin θ. (S28)

The minimal model of I/Q imbalance in the basis |0⟩, |1⟩ is

H =

(
0 Ω(t)eiωt(eiθ + εe−iθ)

Ω(t)e−iωt(e−iθ + ε∗eiθ) ω

)
, (S29)

where real Ω(t) determined the pulse shape and ε = (−ε1 − iε2)/2 is a small constant dimensionless
complex number determining I/Q imbalance. With

Rt = RRω =

(
1 0

0 eiθ

)(
1 0
0 e−iωt

)
, (S30)

we remove the rotation of the Hamiltonian

R†
tHRt −R†

t∂tRt/i = H ′ =

(
0 Ω(t)(1 + εe−2iθ)

Ω(t)(1 + ε∗e2iθ) 0

)
. (S31)

In the following, we exclude the free evolution Rω leaving only R. Denoting Ω(t) = −dϕ(t)/dt, for ϵ = 0,
the evolution U(t) = T exp

∫ t
H ′(t′)dt′/i is equivalent to (6) with ϵ = εe−2iθ so the correction reads

δp1θ = sin θ(sin 2θReε+ cos 2θImε)/2 (S32)

Note the absence of 2nd harmonics so this model is insufficient to explain the found deviations.
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