Supplementary material

Supplementary Figure 1	4
Supplementary Figure 2	6
Supplementary Figure 3	8
Supplementary Figure 4	11
Supplementary Figure 5	12
Supplementary Figure 6	12
Supplementary Figure 7	13
Supplementary Figure 8	14
Supplementary Figure 9	15
Supplementary Figure 10	16
Supplementary Figure 11.	17
Supplementary Figure 12	
Supplementary Table 1	19

A

W259G

MI

L FT P

F350Y

F350A

W259G/V328T/F350A

W259G/V238T/F350T

W259G/V238T/F350V

B

MSACL WT

W259G

W259G/V238T

Supplementary Figure 1. SDS gel using the Nu-PAGE system (Invitrogen) of the MSACL WT and mutants. M: Molecular marker SeeBlue® Plus2 pre-strained standard (6 μ l deposited), I: Induction (15 μ g deposited), L: lysate (surpernatant, 15 μ g deposited), FT: Flow Through NiNTA (15 μ g deposited) and P: purified enzyme (5 μ g deposited). A. Small-scale purification. B. Large-scale purification.

Supplementary Figure 2. UHPLC-MS (APCI) chromatograms and product mass spectra of blank reaction mixture without enzyme (blue) and reaction mixtures (black) of **A**. 4-aminobutyric acid and wild-type *Ms*ACL; MS: extraction of the mass m/z = 86 from the Total Ion Current (TIC) signal, tr = 2.3 min. **B**. 5-aminovaleric acid and *Ms*ACL F350Y; MS: extraction of the mass m/z = 100 from the TIC signal, tr = 3.0 min. **C**. 6-aminohexanoic acid and *Ms*ACL W259G; MS: extraction of the mass m/z = 114 from the TIC signal, tr = 3.4 min.

Supplementary Figure 3. UHPLC-MS (APCI) chromatograms and product mass spectra of standard product of **A**. 4-aminobutyric acid; MS: extraction of the mass m/z = 86 from the TIC signal, tr = 2.3 min. **B**. 5-aminovaleric acid; MS: extraction of the mass m/z = 100 from TIC signal, tr = 3.0 min. **C**. 6-aminohexanoic acid; MS: extraction of the mass m/z = 114 from the TIC signal, t_r = 3.4 min.

Supplementary Figure 4. UHPLC-MS (ESI) chromatograms of reaction mixture of various carboxylic acids with *N*-methyl amine and *Ms*ACL WT and mutants. **A**. *N*-methylbutyramide. **B**. *N*-methylpentanamide. **C**. *N*-methylhexanamide. **D**. *N*-methylheptanamide. **E**. *N*-methyloctanamide. **F**. *N*-methyldecanamide.

Supplementary Figure 5. Michaelis-Menten plot for the determination of the kinetic parameters of *Ms*ACL wild-type.

Reactions conditions: TRIS pH 7.5; ATP 0-10 mM; 4-aminobutyric acid 10 mM; *Ms*ACL wild-type 0.5 mg/mL.

Supplementary Figure 6. Michaelis-Menten plot for the determination of the kinetic parameters of *Ms*ACL W259G. Error represent standard deviations from two independent experiments. The uncertainties of the kinetic parameters values are those generated by the fitting. TRIS pH 7.5; ATP 10 mM; 6-aminohexanoic acid 6 M; *Ms*ACL W259G 0.05 mg/mL.

Supplementary Figure 7. Michaelis-Menten plot for the determination of the kinetic parameters of MSACL W259G/V238T. Error represent standard deviations from two independent experiments. The

Uncertainties of the kinetic parameters values are those generated by the fitting.

TRIS pH 7.5; ATP 10 mM; 6-aminohexanoic acid 6 M; *Ms*ACL mutant W259G/V238T 0.05 mg/mL.

Supplementary Figure 8. NMR spectra of standard *N*-methylhexanamide in CDCl₃. **A**. ¹H 600 MHz. **B**. ¹³C 125 MHz.

Supplementary Figure 9. NMR spectra of standard *N*-methylheptnamide in CDCl₃. **A**. ¹H 600 MHz. **B**. ¹³C 125 MHz.

Supplementary Figure 10. NMR spectrum of standard *N*-methyloctanamide in CDCl₃. **A**. ¹H 600 MHz. **B**. ¹³C 125 MHz.

Supplementary Figure 11. Analytical yields of lactam formation from ω -amino acids catalyzed by WT and mutant enzymes. **A**. γ -butyrolactam. **B**. δ -valerolactam. **C**. ϵ -caprolactam. The dotted red line indicates the yield of spontaneous cyclisation. Reaction conditions: 5 mM ω -amino acid (1-3), 5 mM ATP, 5 mM MnCl₂ in 50 mM MOPS buffer (pH 8.5), 2 mg/mL of purified enzyme, 400 rpm at 60 °C for 24 h. Control reactions correspond to samples without enzyme. Analytical yields were deduced from calibration curves by UHPLC-MS (APCI).

■ MsACL ■ W259G ■ V238T ■ F350Y ■ W259G/V238T ■ W259G/F350Y ■ No enzyme

Supplementary Figure 12. Comparison of the relative areas of various substrates compared to the best variant enzyme for each substrate by monitoring the formation of the corresponding N-methyl amide compounds by UHPLC-MS. Reaction conditions: 5 mM substrate (4-6; 8-9; 10-14), 5 mM ATP, 5 mM MgCl2, 50 mM MeNH2 in 50 mM phosphate buffer (pH 8) was added 0.2 mg/mL of purified enzyme, 400 rpm at 60 °C for 24 h.

A4YDT1	Primer	Sequence
variant		
W259G	Forward (F)	TGGGCCAAGTTCGCG <u>GGC</u> AGCTCATTCTTCTCCCCTT
	Reverse (R)	AAGGGGAGAGAAGAATGAGCTGCCGCGAACTTGGCCCA
V238T	Forward (F)	ACCACAGCCTCCATAACCGGCGTCAGGGAGAGCGATCTCCACTTA
	Reverse (R)	TAAGTGGAGATCGCTCTCCCTGACGCC <u>GGT</u> TATGGAGGCTGTGGT
F350Y	Forward (F)	CTTACCATAAGGGAC <u>TAT</u> TACGGCCAGACTGAGACC
	Reverse (R)	GGTCTCAGTCTGGCCGTAAGGTCCCTTATGGTAAG
F350A	Forward (F)	CTTACCATAAGGGACGCCTACGGCCAGACTGAGACC
	Reverse (R)	GGTCTCAGTCTGGCCGTAGGGCGTCCCTTATGGTAAG
F350T	Forward (F)	CTTACCATAAGGGACACCTACGGCCAGACTGAGACC
	Reverse (R)	GGTCTCAGTCTGGCCGTAGGGTAGGGTCCCTTATGGTAAG
F350V	Forward (F)	CTTACCATAAGGGACGTGTACGGCCAGACTGAGACC
	Reverse (R)	GGTCTCAGTCTGGCCGTACGTCCCTTATGGTAAG

Supplementary Table 1. Primer sequence for variant. Mutated codons are in bold and underlined.