
Supplementary Material

1 PROBABILISTIC NETWORKS AND FACTOR GRAPHS

Bayesian networks are among the most commonly used graphical models for probabilistic reasoning in
robotics. They are directed acyclic graphs (DAG) that encode random variables as probability distributions
via the nodes and direct conditional dependencies as edges between the nodes. Factor graphs as exemplified
in Figure S1 generalize Bayesian networks by representing a factorization of an arbitrary function.
Structurally, they represent variables and factors between these variables. Additionally, the graph structure
is undirected so that the factors represent constraint relations1 between their arguments; it is the queries on
top of the graph that introduce directionality.

Variable nodes in Bayesian networks support various types of discrete and continuous probability
distributions. Factor graphs lift this restriction and allow for arbitrary variable types to be encoded in
the nodes (Loeliger, 2004). Examples can be found in factor graphs for SLAM problems (Dellaert and
Kaess, 2017), dynamics solvers for kinematic chains (Xie and Dellaert, 2020), or (equality-constrained)
linear-quadratic regulators (Yang et al., 2021).

Assuming that the factor graph in Figure S1 does represent a Bayesian network, we may be interested
in computing a so-called marginal function such as f̄4(x4) = p(x4|x1, x2, x3): what is the posterior
probability of observing x4 given the evidence x1, x2 and x3? Efficient approaches for solving such queries
rely on dynamic programming (Bellman, 1957). A top-down application, starting at the variable for which
the posterior probability is queried (here x4), leads to the variable elimination algorithm (Russell and
Norvig, 2010) which is equivalent to solving the expression on the right-hand side of Equation (S1).

1 A constraint relation must hold for any values assigned to the variables. Using the velocity transformation between frames A and B as an example, the
constraint relation ẊA−AXB ẊB = 0 can lead to either an assignment ẊA ← AXB ẊB if ẊB is given and ẊA is queried for, or ẊB ← AX−1

B ẊA

in the opposite case.

Figure S1. Structurally, the factor graph of the function f̄(x1, x2, x3, x4) =
f1(x1, x2)f2(x2)f3(x2, x3, x4)f4(x4) consists of variables (white circle) and factors (black boxes).
Message passing imposes behavior on the graph by performing computations at graph nodes and sending
messages µ (indicated by arrows) between the nodes. Finally, a schedule (numbers in circles) asserts an
ordering constraint on the computations, with green circles for the inward propagation and blue circles for
the outward propagation of messages (x4 is assumed to be the root).

1



Supplementary Material

f̄4(x4) = f4(x4)

(∑
x2,x3

f3(x2, x3, x4)f2(x2)

(∑
x1

f1(x1, x2)

))
(S1)

However, variable elimination only answers a single query: asking for a different marginal function
amounts to forming another expression and solving it from scratch. Hence, a bottom-up application of
dynamic programming that starts at the leave nodes and decomposes the network’s state to answer multiple
queries is preferable. The resulting algorithm is known under the generic name of message passing, belief
propagation (Pearl, 1982) in the context of Bayesian networks, or the sum-product algorithm for factor
graphs. To compute an answer to the above query, message passing proceeds as shown in Figure S1. First,
it selects an arbitrary variable as the root, here x4. Then it propagates messages inward from the leaves
to the root and afterwards outward from the root to the leaves. Finally, answers can be computed for any
variable by multiplying all incoming messages, for example f̄4(x4) = µf4→x4(x4)µf3→x4(x4).

Pearl (1988) provides an example of iterative computations in graphical models in the context of
answering queries that are more complicated as the example above. First, message passing solves for the
given network. Next, the query is represented as additional nodes that are connected to a subset of that
network. Then, the query can be solved by only updating the newly-added nodes while keeping the state of
the original network unchanged. This approach can be seen as caching along the “network dimension”, i.e.
the network retains state when introducing new nodes. It is also possible to perform caching along the “time
dimension” by retaining state over several message-passing invocations. As an example, a Kalman filter for
outdoor localization is fed by two sources: odometry that provides measurements at higher frequencies and
a Global Positioning System (GPS) sensor running at lower frequencies. Then, multiple prediction steps
of the Kalman filter using the odometry can be executed for each correction step that relies on the GPS
instead. Consequently, distinct parts of the Kalman filter execute at different frequencies.

To connect a graphical model to an encompassing application, it is composed or extended with decision
nodes to provide inputs to the network and utility nodes that return feedback to the application (Russell
and Norvig, 2010). A simple example of the latter case is a monitor that trigger when some variables have
crossed a threshold with a sufficiently high certainty. Such extended networks are also known as influence
diagrams (Howard and Matheson, 2005; Jensen and Nielsen, 2007; Kjærulff and Madsen, 2008).

2 DATA-FLOW PROGRAMMING

Data-flow programming is the domain of a variety of block-port-connector (BPC) models or block diagrams
for software architectures (Scioni et al., 2016). This includes component-based robotic software frameworks
(RSF) (Shakhimardanov et al., 2010; Brugali and Scandurra, 2009; Brugali and Shakhimardanov, 2010)
such as the Robot Operating System (ROS) (Quigley et al., 2009) or the Open Robot Control Software
(OROCOS) (Bruyninckx et al., 2003) that are among the most prominent data-flow programming
approaches in robotics. RSFs facilitate the easy reuse of existing software components, their flexible
integration into and iteration of new applications, as well as the distribution of such components in a
computer network. The components usually map to processes or threads and, thus, rely on the operating
system for scheduling the computations. Most of these frameworks rely on semi-formal, implicit models.
Nevertheless, these models have already facilitated the development of a variety of tools for the introspection

2



Figure S2. Example of a cascade control diagram where the innermost loop (gray, dashed box) for
computing joint control torques τ ctrl runs at the highest frequency, followed by the intermediate velocity
loop Ẋ and the outer position loop X at subsequently lower frequencies. Kp and Kv are gains that act
on the position error and velocity error, respectively. The red boxes represent solvers for the forward
position kinematics (FPK), forward velocity kinematics (FVK) and acceleration-constrained hybrid
dynamics (Vereshchagin, 1989) (ACHD) problems. The latter solver accepts acceleration constraints
as a pair of end-effector unit constraint forces F cstr,N and acceleration energies Ecstr,N .

(e.g. rosgraph2, rqt graph3, TaskBrowser4), and instrumentation (e.g. rosbag5, rqt bag6,
rqt console7) of running systems. Additionally, they are the basis for interfacing between different
RSFs8. However, the components’ boundaries are also the boundaries of introspection and instrumentation,
meaning the tools are inadequate to look into the components.

Figure S2 depicts a generic cascade control diagram of a trajectory-following controller. Such a visual
representation is an attractive property of data-flow graphs that can be more intuitive for a human to
understand than a purely mathematical or textual representation. Hence, a variety of data-flow programming
tools have emerged that also allow the visual design of complicated systems. Commercial tools include,
among others, MathWorks’ Simulink9 or Virtual Instruments (VI) in National Instruments’ LabVIEW10.
Node-RED11 is another example from the “World Wide Web” domain, whereas the Function Block
Diagram as defined in (International Electrotechnical Commission (IEC), 2013) is more prominently found
in programmable logic controllers.

A further feature of data-flow graphs is to keep the control flow implicit. As an example, many
computations in a robot (i) require input data from sensors, which usually provide data at different
cycle rates; (ii) have input-output dependencies with each other, meaning the output from one computation
may be consumed by one or more other computations; and (iii) are concurrent, in other words they can
be executed reentrant. This is exploited in the Stack of Task’s dynamic-graph to schedule chains of

2 http://wiki.ros.org/rosgraph
3 http://wiki.ros.org/rqt_graph
4 https://docs.orocos.org/ocl/orocos-taskbrowser.html
5 http://wiki.ros.org/rosbag
6 http://wiki.ros.org/rqt_bag
7 http://wiki.ros.org/rqt_console
8 https://github.com/orocos/rtt_ros_integration
9 https://www.mathworks.com/products/simulink.html
10 https://www.ni.com/labview
11 https://nodered.org/

Frontiers 3

http://wiki.ros.org/rosgraph
http://wiki.ros.org/rqt_graph
https://docs.orocos.org/ocl/orocos-taskbrowser.html
http://wiki.ros.org/rosbag
http://wiki.ros.org/rqt_bag
http://wiki.ros.org/rqt_console
https://github.com/orocos/rtt_ros_integration
https://www.mathworks.com/products/simulink.html
https://www.ni.com/labview
https://nodered.org/


Supplementary Material

Figure 3a. Expression tree for Equation (S1) with
operators in green boxes and variables, constants,
or even functions in blue boxes as leaf nodes. Given
input at the leaves, the evaluation along the arrows
yields the result.

Figure 3b. Expression graph for the expression
x+y

∥x+y∥×(43+z) with x and y as vectors, as well as
z as a scalar. Caching (orange boxes) can improve
computational performance by avoiding multiple
evaluations of common sub-expressions (lower
case) or allowing for incremental computation
(upper case) — the left branch does not have to
be updated when only z changes.

computations dynamically at runtime whenever new sensor data arrives. Consequently, this approach
reduces the overall number of required computations, and it enables incremental computations by caching
intermediate results.

Structurally, the above data-flow models represent arbitrary computations directly in the graph nodes. The
data structures remain implicit as they are indicated only by the edges or arrows between the nodes. Since
these edges usually also encode some form of feedback, such diagrams must be represented by generic
graphs that can contain directed loops. The graph is executed periodically to realize the intended behavior
over time. To this end a single graph traversal suffices that dispatches computations at the nodes. However,
that traversal must take care of cutting loops or traversing hierarchically into sub-graphs that are executed
at varying frequencies.

3 EXPRESSION TREES AND EXPRESSION GRAPHS

Expression trees are another representation to structure computations. In fact, solvers for tree-structured
graphical models can be represented as expressions and, hence, expression trees (Kschischang et al., 2001).
As an example, Figure 3a depicts the expression tree for Equation (S1).

Other examples comprise the variety of C++ linear algebra libraries, among them Eigen12,
Blitz++ (Veldhuizen, 1997), uBLAS13, or Armadillo (Sanderson and Curtin, 2019) which use so-called
expression templates (Veldhuizen, 1995; Vandevoorde et al., 2002). This allows them to reify the expression
tree of linear algebra operations via template metaprogramming. On the one hand, this enables the lazy
evaluation of expressions in C++, meaning that the result is computed at the last possible moment before it
is required. On the other hand, the expression can then be optimized before its evaluation, for example, by
eliminating temporary and intermediate computations, or memory allocations. Drawbacks of this approach

12 https://eigen.tuxfamily.org/
13 https://www.boost.org/doc/libs/release/libs/numeric/ublas/

4

https://eigen.tuxfamily.org/
https://www.boost.org/doc/libs/release/libs/numeric/ublas/


originate from the fact that templates are an internal DSL of C++. As a result, the models are effectively
only accessible at compile time by a capable C++ compiler. Additionally, the resulting code fuses models
— the expression tree itself — with the implementation — the computations to evaluate the nodes in the
expression tree.

The reification of the expression tree also has important applications in modern machine learning
frameworks such as TensorFlow or PyTorch. First, just like in the previous C++ libraries it enables the
pre-processing and optimization of the expression, as well as dispatching computations to dedicated and
optimized numeric libraries. Second, it allows the computation of gradients of the overall expression via
automatic differentiation (Rall, 1981; Griewank and Walther, 2008). This is the foundation of training
artificial neural networks with the backpropagation algorithm (Baydin et al., 2017). Third, the amount of
data that is propagated through the expression tends to be massive so that even the evaluation of individual
operators can be costly. In such a situation, sub-expression may be evaluate in a parallel or distributed
manner. This is possible because the computational graph explicitly encodes which sub-expressions — the
branches — are independent of each other.

The previous approaches represent computations as a tree structure, i.e. computations do not contain a
cycle. However, the same data can be connected to multiple operators. Hence, the combination of operators
and data can form a directed-acyclic graph (DAG). The expression graph library instead reifies
expressions so that also the computations can form a DAG as depicted in Figure 3b. As an additional
feature, it introduces a mechanism to explicitly encode which sub-graphs should be cached. This allows for
incrementally computing expressions and only evaluate sub-graphs when their input data has changed; as
well as reducing the overall number of expression evaluations when branches share sub-expressions.

The main insight is that these libraries construct more or less explicit models of algorithms and at a higher
level of abstraction than what a compiler for general-purpose languages can see. As a result, the libraries
can programmatically manipulate the models, for example, by introducing domain-specific optimizations
or by imposing certain computational policies on them. Schedules consist of up to two traversals. The
first sweep evaluates the expression as such from the leaves, where the input data resides, to the root.
The second sweep, in the opposite direction, can then evaluate derivatives of the expression with respect
to chosen parameters. An expression graph directly encodes the to-be-executed operators, but not their
derivatives.

REFERENCES

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2017). Automatic Differentiation in
Machine Learning: A Survey. The Journal of Machine Learning Research 18, 5595–5637

Bellman, R. (1957). Dynamic Programming (Princeton University Press)
Brugali, D. and Scandurra, P. (2009). Component-based robotic engineering (Part I) [Tutorial]. IEEE

Robotics & Automation Magazine 16, 84–96
Brugali, D. and Shakhimardanov, A. (2010). Component-Based Robotic Engineering (Part II). IEEE

Robotics & Automation Magazine 17, 100–112
Bruyninckx, H., Soetens, P., and Koninckx, B. (2003). The Real-Time Motion Control Core of the Orocos

Project. In Proc. IEEE International Conference on Robotics and Automation (ICRA)
Dellaert, F. and Kaess, M. (2017). Factor Graphs for Robot Perception. Foundations and Trends in Robotics

6, 1–139
Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic

Differentiation (Society for Industrial and Applied Mathematics), second edn.

Frontiers 5



Supplementary Material

Howard, R. A. and Matheson, J. E. (2005). Influence Diagrams. Decision Analysis 2, 127–143
International Electrotechnical Commission (IEC) (2013). IEC 61131-3 – Programmable controllers - Part

3: Programming languages. Standard
Jensen, F. V. and Nielsen, T. D. (2007). Bayesian Networks and Decision Graphs (Springer), second edn.
Kjærulff, U. B. and Madsen, A. L. (2008). Bayesian Networks and Influence Diagrams: A Guide to

Construction and Analysis (Springer), second edn.
Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. (2001). Factor Graphs and the Sum-Product Algorithm.

IEEE Transactions on Information Theory 47, 498–519
Loeliger, H.-A. (2004). An introduction to factor graphs. IEEE Signal Processing Magazine 21, 28–41
Pearl, J. (1982). Reverend Bayes on inference engines: A distributed hierarchical approach. In Proc.

International Joint Conference on Artificial Intelligence
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems (Morgan Kaufmann)
Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., et al. (2009). ROS: an open-source Robot

Operating System. In IEEE International Conference on Robotics and Automation (ICRA). Workshop on
Open Source Software

Rall, L. B. (1981). Automatic Differentiation: Techniques and Applications
Russell, S. J. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach (Pearson), 3 edn.
Sanderson, C. and Curtin, R. (2019). Practical Sparse Matrices in C++ with Hybrid Storage and Template-

Based Expression Optimisation. Mathematical and Computational Applications 24
Scioni, E., Hübel, N., Blumenthal, S., Shakhimardanov, A., Klotzbücher, M., Garcia, H., et al. (2016).

Hierarchical Hypergraphs for Knowledge-centric Robot Systems: a Composable Structural Meta Model
and its Domain Specific Language NPC4. Journal of Software Engineering for Robotics (JOSER) 7,
55–74

Shakhimardanov, A., Hochgeschwender, N., and Kraetzschmar, G. K. (2010). Component Models in
Robotics Software. In Proc. Performance Metrics for Intelligent Systems Workshop (PerMIS)

Vandevoorde, D., Josuttis, N. M., and Gregor, D. (2002). C++ Templates – The Complete Guide
(Addison-Wesley)

Veldhuizen, T. (1995). Expression Templates. C++ Report 7, 26–31
Veldhuizen, T. (1997). Scientific Computing: C++ Versus Fortran: C++ has more than caught up. Dr.

Dobb’s Journal of Software Tools 22, 34, 36–38, 91
Vereshchagin, A. F. (1989). Modelling and control of motion of manipulational Robots. Soviet Journal

of Computer and Systems Sciences 27, 29–38. Originally published in Izvestiia Akademii nauk SSSR,
Tekhnicheskaya Kibernetika, No. 1, pp. 125–134, 1989

Xie, M. and Dellaert, F. (2020). A Unified Method for Solving Inverse, Forward, and Hybrid Manipulator
Dynamics using Factor Graphs. Tech. rep. [online], arXiv:1911.10065v2

Yang, S., Chen, G., Zhang, Y., Choset, H., and Dellaert, F. (2021). Equality Constrained Linear Optimal
Control With Factor Graphs. In Proc. IEEE International Conference on Robotics and Automation
(ICRA)

6


	Probabilistic networks and factor graphs
	Data-flow programming
	Expression trees and expression graphs

