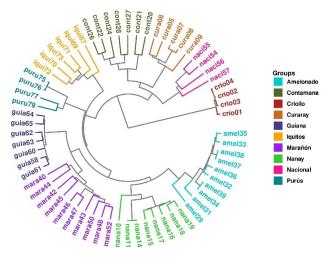
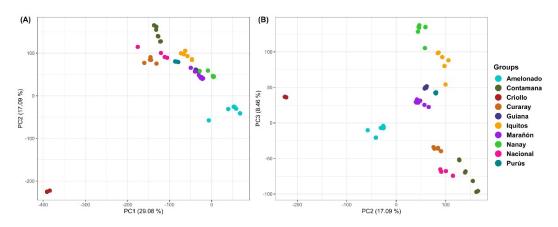
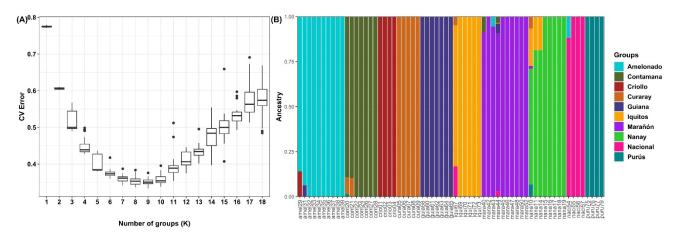


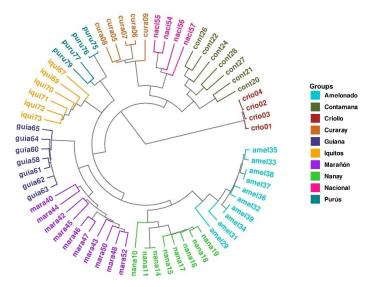
Supplementary Material

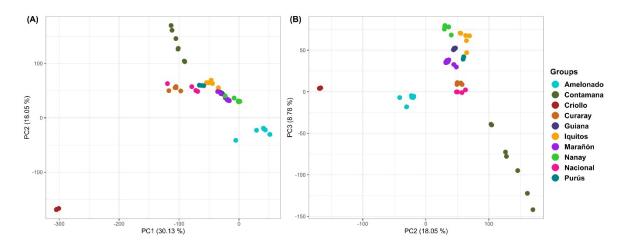

1 Supplementary Data

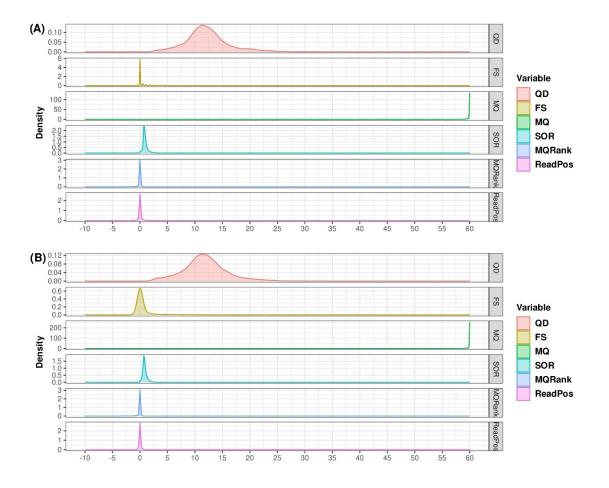
2 Supplementary Figures and Tables

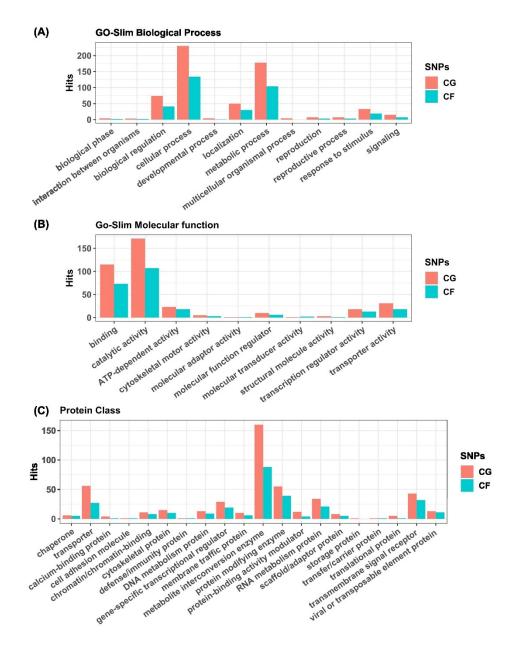

2.1 Supplementary Figures

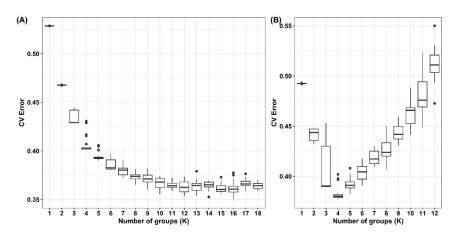

Supplementary Figure 1. Membership to cacao ancestry genetic groups of the 65 reference plants using the 11,425 SNPs from CG SNP dataset and ADMIXTUXE was run with the cross-validation procedure described in Material and Methods. (A) CV Error vs K plot for 20 independent ADMIXTURE runs per K; horizontal lines represent the median, boxes stand for the 25 and 75 % percentiles, vertical lines point to minimum and maximum values and the dots are "outlier" data. (B) Ancestry assuming K=10, the Q-matrix of ADMIXTURE run with the best combination of low CV error and low number of iterations to convergence was selected. Plot were generated using ggplot2 package from R program.

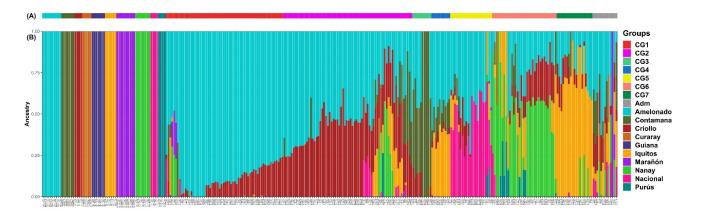

Supplementary Figure 2. Dendrograms of the 65 reference plants of cacao ancestry genetic groups using the 11,425 SNPs from CG SNP dataset. Clustering based on UPGMA from a Hamming distance matrix. Plot were generated using ggtree and treeio packages from R program.

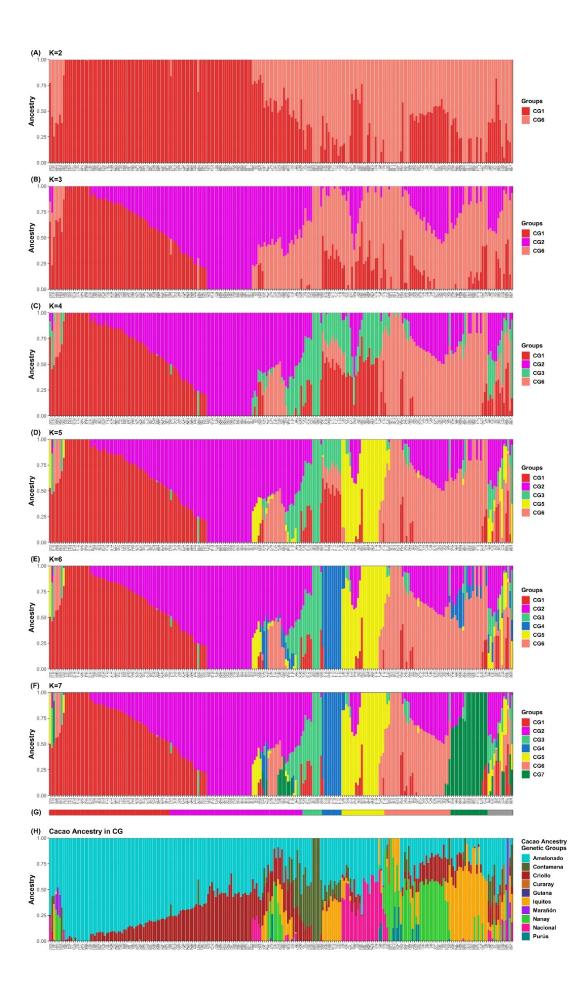

Supplementary Figure 3. Principal component analysis plots of the 65 reference plants of cacao ancestry genetic groups references using 11,425 SNPs from CG SNP dataset. (a) PC1 and PC3, (b) PC2 and PC3. Plots were generated using ggplot2 and ggpubr packages from R program.

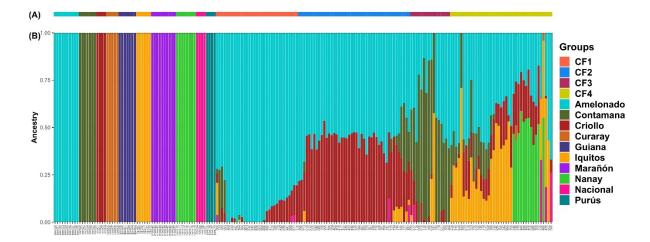

Supplementary Figure 4. Membership to cacao ancestry genetic groups of the 65 reference plants using the 6,481 SNPs from CF SNPs dataset. ADMIXTUXE was run with the cross-validation procedure described in Material and Methods. (A) CV Error vs K plot for 20 independent ADMIXTURE runs per K; horizontal lines represent the median, boxes stand for the 25 and 75 % percentiles, vertical lines point to minimum and maximum values and the dots are "outlier" data. (B) Ancestry assuming K=10, the Q-matrix of ADMIXTURE run with the best combination of low CV error and low number of iterations to convergence was selected. Plot were generated using ggplot2 package from R program.

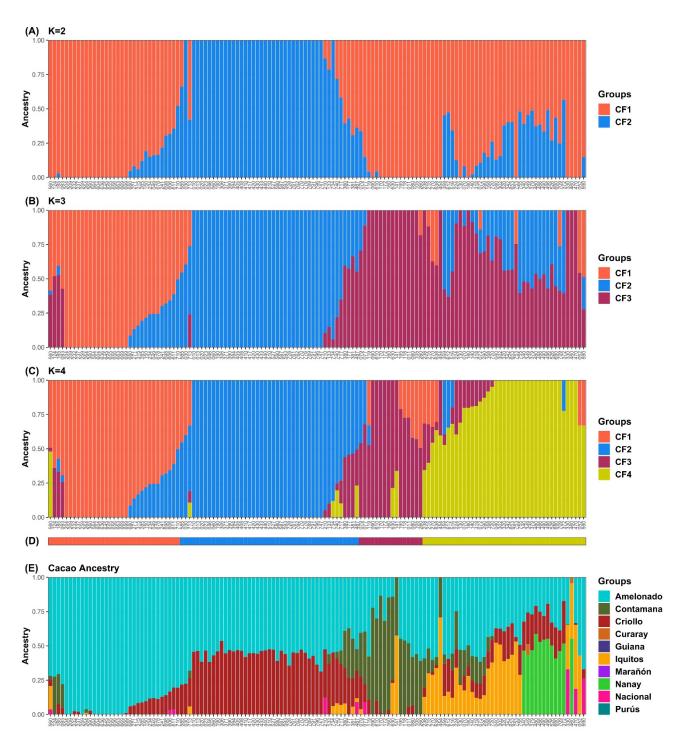

Supplementary Figure 5. Dendrograms of the 65 reference plants of cacao ancestry genetic groups using the 6,481 SNPs from CF SNPs dataset. Clustering based on UPGMA from a Hamming distance matrix. Plot were generated using ggtree and treeio packages from R program.

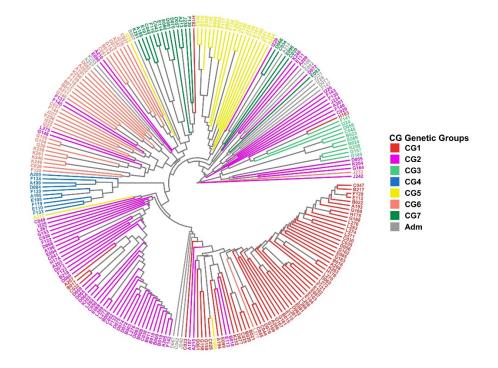

Supplementary Figure 6. Principal component analysis plots of the 65 reference plants of cacao ancestry genetic groups using the 6,481 SNPs from CF SNP dataset. (A) PC1 and PC3, (B) PC2 and PC3. Plots were generated using ggplot2 and ggpubr packages from R program

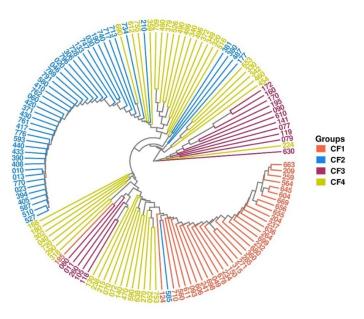

Supplementary Figure 7. SNPs quality check based on distribution of **QD** (*Quality by Depth*), **MQ** (*Mapping Quality*), **FS** (*Fisher Strand*), **SOR** (*Strand Odds Ratio*), **MQRank** (*Mapping Quality Rank Sum Test*) and **ReadPos** (*Read Position Rank Sum Test*) among the SNPs from CG (A) and CF (B) SNP datasets. Plots were built using ggplot and ggpurb R packages. **Note: QD** expected values are higher than 2 with peaks around 12 and 32. **FS**, **MQRank**, and **ReadPos** values closed to 0 suggest little or the absent of bias in the SNPs supporting data. **MQ** values around 60 (the maximum) are expected. **SOR** values should be between 0 and 3 (Caetano-Anolles, 2022).

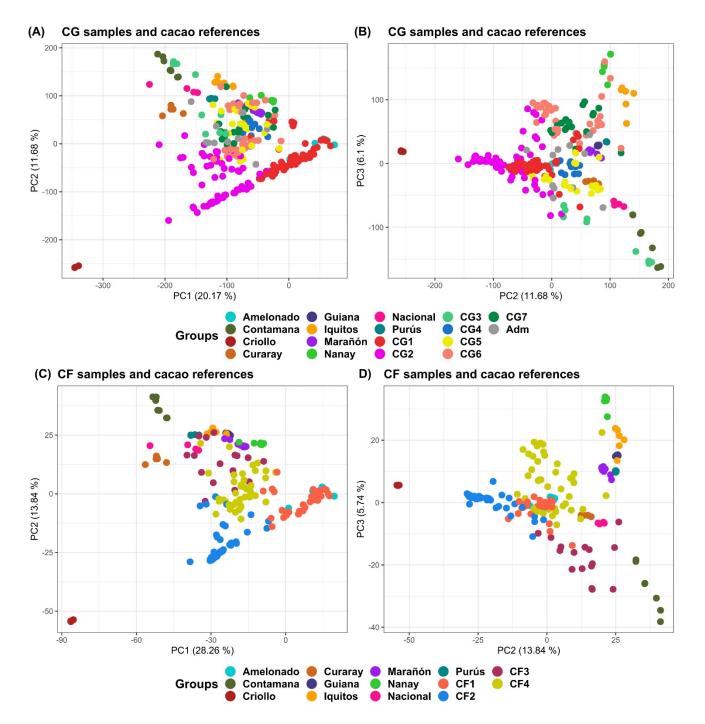

Supplementary Figure 8. Results of gene ontology analysis using PANTHER classification system based on gene list built from CG and CF SNP datasets annotation. Gene list contained genes carrying SNPs with moderate or high impact according to SnpEff. Hit counting with terms or categories from databases GO-Slim biological process (A), GO-Slim molecular function (B) and Protein class (C) are shown.


Supplementary Figure 9. Cross validation error (CV Error) vs number of groups (K) plots for 20 independent ADMIXTURE runs per K using the 11,425 and 6,481 SNPs from CG (A) and CF (B) samples, respectively. Horizontal lines represent the median, boxes stand for the 25 and 75 % percentiles, vertical lines point to minimum and maximum values and dots are "outlier" data.


Supplementary Figure 10. Membership to cacao genetic groups of 238 CG plants and 65 reference plants of cacao ancestry genetic groups assuming K=10. ADMIXTURE was run under supervised mode using the 11,425 SNPs from CG SNP dataset. (A) Assignment to cacao ancestry genetic groups or CG genetic groups identified by ADMIXTURE (Figure 3, main text). (B) Membership to the cacao genetic groups identified by Motamayor *et al.* (2008). Plot was generated using ggplot2 and ggpubr packages from R program.


Supplementary Figure 11 (Previous page). Memberships of 238 CG samples according to ADMIXTURE program. Samples membership assuming K=2 (A), K=3 (B), K=4 (C), K=5 (D), K=6 (E) and K=7 (F) as estimated by ADMIXTURE using cross validation. Each column represents an individual. (G) Group assignment based on K=7, Admixed plants ("Adm" group) in grey. (H) Membership to cacao ancestry genetic groups identified by Motamayor *et al.* (2008) using ADMIXTURE under supervised mode. Ancestry plot combining CG plants and cacao reference plants is shown in Supplementary Figure 10. Plots were generated using ggplot2 and ggpubr packages from R program.


Supplementary Figure 12. Membership to cacao genetic groups of 135 CF plants and 65 reference plants of cacao ancestry genetic groups assuming K=10. ADMIXTURE was run under supervised mode using the 6,481 SNPs from CF SNP dataset. (A) Assignation to cacao genetic groups or CF groups identified by ADMIXTURE (Figure 6, main text). (B) Membership to the cacao genetic groups identified by Motamayor *et al.* (2008). Plot was generated using ggplot2 and ggpubr packages from R program.


Supplementary Figure 13. Memberships of CF samples according to ADMIXTURE program. Samples membership assuming K=2 (A), K=3 (B) and K=4 (C) according to ADMIXTURE using cross validation. Each column represents an individual. (D) Group assignment based on K=4. (E) Membership to cacao ancestry genetic groups identified by Motamayor *et al.* (2008) using ADMIXTURE under supervised mode. Ancestry plot combining CG plants and cacao reference plants is shown in Supplementary Figure 13. Plots were generated using ggplot2 and ggpubr packages from R program.

Supplementary Figure 14. Dendrogram with 238 CG samples. Clustering by UPGMA from a Hamming distance matrix based on the 11,425 SNPs from CG SNP dataset. CG plants coloring is based on the membership assuming K=7 from ADMIXTURE program. Plot was generated using ggtree and treeio packages from R program.

Supplementary Figure 15. Dendrogram with 135 cacao farms samples. Clustering by UPGMA from a Hamming distance based on the 6,481 SNPs from CF SNP dataset. CF individual coloring is based on the membership assuming K=4 from ADMIXTURE program. Plot was generated using ggtree and treeio packages from R program.

Supplementary Figure 16. Principal component analysis plots of the 238 CG samples and 65 cacao genetic groups references using the 11,481 SNPs from CC SNPs dataset (A and B) and the 135 CF samples and 65 cacao genetic groups references using the 6,481 SNPs from CF SNPs dataset (C and D). (A) PC1 and PC2 of CG and reference plants, (B) PC2 and PC3 PC2 of CG and reference plants. (A) PC1 and PC of CF and reference plants, (B) PC2 and PC3 of CF and reference plants. Samples coloring is based on membership assuming K=7 for CG samples, membership assuming K=4 for CF samples and cacao ancestry genetic groups for reference plants. Plots were generated using ggplot2 and ggpubr packages from R program.

2.2 Supplementary Tables

Supplementary Table 1. Details of the cacao farms used for sampling purpose.

Farm ID	Productive Pole	Farm Name	Farm Type	Cacao plants origin	North Coordinate	West Coordinate	Farm Size (ha)	Plots (Unit)	Sampled Plant (Unit)
F08	Jamal	Finca Los Yaser	4	Traditional / Hybrid / Grafted	20°16,413' N	74°25,644' W	16	8	40
F15	Jamal	Santa Rita	4	Traditional / Hybrid / Grafted	20°16,638' N	74°25,521' W	9,45	5	25
F02	San Luis	Finca Santa María	3	Traditional / Hybrid	20°18,730' N	74°25,610' W	11,7	3	15
F19	San Luis	La Esperanza I	2	Grafted	20°17,698' N	74°26,779' W	3	3	15
F05	Paso de Cuba / Sabanilla	Finca Elcita	1	Hybrid / Grafted	20°17,101' N	74°27,907' W	5,33	3	15
F10	Paso de Cuba / Sabanilla	Finca San Miguel	1	Hybrid / Grafted	20°15,577' N	74°27,713' W	6,66	6	30
F11	Paso de Cuba / Sabanilla	Poca Pena	2	Grafted	20°15,192' N	74°27,625' W	8,5	4	20

Note: Farm type as described in Materials and Methods. Farm size refers to total amount of hectare of the farm not only to the cacao planted area. Plot is number of plots raised in the cacao plantation. Sampled Plant refers to the number of plants collected for analysis purposes in the farm.

Supplementary Table 2. List of clones used as references plants of cacao ancestry genetic groups according to Cornejo *et al.*, (2018).

ID	Plant Code	Genetic Group	ID	Plant Code	Genetic Group		
crio01	Criollo		mara40	PA – 218			
crio02	Sp1	Criollo	mara42	PA - 150			
crio03	Sp3	CHOID	mara43	PA – 51			
crio04	Sp9		mara44	PA – 107			
cura05	Cur 3 G39 - A10		mara45	PA – 169	Marañón		
cura06	Cur 3 G37 - A6		mara46	MO – 4	Iviaranon		
cura07	Cur 3 G38 - A8	Curaray	mara47	MO – 9			
cura08	LCTEEN - 141	_	mara48	PA 289			
cura09	SIL -1-G56-A6		mara50				
nana10	SPEC - 194 75		mara52	PA -121			
nana11	Pound 7			UF 273 T1			
nana14	Pound 7B		naci55	UF 273 T2	Nacional		
nana15	Pound 10-B	Nonou	naci56		Nacioliai		
nana16	NA - 92	Nanay	naci57	Brisas -1			
nana17	NA - 331		guia58	GU - 308A			
nana18	NA - 286		guia60	GU -300 P			
nana19	NA - 702		guia61				
cont20	NH - 53		guia62	GU - 291F	Guiana		
cont21	NH - 40		guia63	GU - 175P			
cont22	T 695 -SCA6 - A1		guia64	GU - 114P			
cont24	SCA 24.2	Contamana	guia65	GU - 255V			
cont26	SCA -11		iqui67	IMC – 51			
cont27	PMF - 27		iqui69	IMC – 12			
cont28	PMF - 20		iqui70	IMC – 50	Iquitos		
amel29	TRD86			IMC – 20	iquitos		
amel31	REDAMEL 1-31			IMC -67			
amel32	SIAL 84		iqui73	IMC – 14			
amel33	SIAL 70		puru75	CAB 77 - PL5			
amel34	SIC 806	Amelonado	puru76	CAB 76 - PL3	Purús		
amel35	mvP30	Ameionauo	puru77	RB 47 - PL3	r utus		
amel36	SIAL 169		puru79	RB 39 - PL1			
amel37	Matina						
amel38	Matina Tica 2						
amel39	Catongo						

Legend: ID: Identifier used in this study, **Plant Code:** Code as Cornejo *et al.* (2018), **Genetic Group:** Plant memberships to cacao ancestry genetic groups defined by Motamayor *et al.* (2008) and assigned by Cornejo *et al.* (2018). **Note:** Sequence data were downloaded from NCBI (*BioProject* PRJNA486011) using SRA toolkit v2.11.0 (SRA Toolkit Development Team, 2022) and processed as described (Cornejo *et al.*, 2018). The identified SNPs were confirmed with the SNP list deposited in European Variation Archive (https://www.ebi.ac.uk/eva/, *Project accession code* PRJEB28591).

Supplementary Table 3. AMOVA results of reference plants of cacao ancestry genetic groups using the 11,425 SNP from of CG SNP dataset.

Source of Variation	Df	SS	MS	Sigma	Variance (%)
Between groups	9	131,092.75	14,565.86	2,167.56	76.76
Within groups	55	36,102.11	656.40	656.40	23.24
Total	64	167,194.86	2,612.42	2,823.97	100.00

Legend: Df: Degree of freedom, **SS:** Square Sum, **MS:** Mean Square. Highly significant values with p < 0.001.

Supplementary Table 4. Fst pairwise comparison among the reference plants of cacao ancestry genetic groups using the 11,425 SNPs from CG SNP dataset.

	Amel	Cont	Crio	Cura	Guia	Iqui	Mara	Nana	Naci	Legend:
Cont	0.709									Amel: Amelonado
Crio	0.923	0.773								Cont: Contamana
Cura	0.794	0.456	0.824							Crio: Criollo
Guia	0.749	0.630	0.926	0.750						Cura: Curaray
Iqui	0.558	0.433	0.762	0.501	0.550					Guia: Guiana
Mara	0.478	0.486	0.790	0.567	0.401	0.379				Iqui: Iquitos
Nana	0.608	0.625	0.872	0.705	0.676	0.367	0.474			Mara: Marañón
Naci	0.712	0.414	0.796	0.457	0.681	0.412	0.502	0.636		Nana: Nanay
Puru	0.718	0.447	0.846	0.568	0.659	0.381	0.429	0.579	0.504	Naci: Nacional
		-	-	-	-	-	-	-		Puru: Purús

Note: All Fst values were significant (p=0).

Supplementary Table 5. AMOVA results of the reference plants of cacao ancestry genetic groups using the 6,481 SNPs of CF SNP datasets.

Source of Variation	Df	SS	MS	Sigma	Variance (%)
Between Groups	9	70,074.10	7,786.01	1,158.79	76.81
Within Groups	55	19,246.08	349.93	349.93	23.19
Total	64	89,320.17	1,395.63	1,508.72	100.00

Legend: Df: Degree of freedom, **SS:** Square Sum, **MS:** Mean Square. Highly significant values with p < 0.001.

Supplementary Table 6. Fst pairwise comparison among the 65 reference plants of cacao ancestry
genetic groups reference plants using the 6,841 SNPs from CF SNP dataset.

	Amel	Cont	Crio	Cura	Guia	Iqui	Mara	Nana	Naci	Legend:
Cont	0.711									Amel: Amelonado
Crio	0.926	0.769								Cont: Contamana
Cura	0.800	0.465	0.834							Crio: Criollo
Guia	0.756	0.621	0.927	0.749						Cura: Curaray
Iqui	0.582	0.450	0.782	0.516	0.568					Guia: Guiana
Mara	0.487	0.495	0.797	0.568	0.393	0.387				Iqui: Iquitos
Nana	0.620	0.626	0.883	0.713	0.687	0.370	0.477			Mara: Marañón
Naci	0.698	0.394	0.801	0.451	0.658	0.396	0.463	0.617		Nana: Nanay
Puru	0.725	0.445	0.852	0.582	0.661	0.389	0.426	0.585	0.478	Naci: Nacional
		-	-	-	-		-	-	-	Puru Purús

a: Marañón a: Nanay Nacional Puru: Purús

Note: All Fst values were significant (p=0).

Supplementary Table 7. Transition and transversion statistics in CG and CF SNP datasets.

	Cacao Gei	ne Bank	Cacao Farms		
Change (Type)	Count	%	Count	%	
Total SNPs	11,425	100	6,481	100	
C/T	3,608	31.58	1,995	30.78	
A/G	3,501	30.64	2,041	31.49	
Ts	7,10	9	4,036		
C/G	765	6.70	457	7.05	
G/T	1,138	9.96	634	9.78	
A/C	1,112	9.73	620	9.57	
A/T	1,301	11.39	734	11.33	
Tv	4,31	6	2,445		
Ts/Tv	1.64	7	1.651		

Legend: Change: Refers to the substitution type, Count: numbers of changes, C: Cytosine, T: Thymine, A: Adenine, G: Guanine, Ts: Transitions, Tv: Transversions, Ts/Tv: Transitions/Transversions ratio.

Supplementary Table 8. Q-matrices matching the high membership premise for each K value assessed with CG samples.

K	No of ADMIXTURE runs for each K value	Q-matrices matching the premise	Q-matrices no matching the premise
2	20	20	0
3	20	20	0
4	20	20	0
5	20	19	1
6	20	17	3
7	20	9	11
8	20	3	17
9	20	4	16
10	20	2	18
11	20	0	20
12	20	0	20
13	20	0	20
14	20	0	20
15	20	0	20
16	20	0	20
17	20	0	20
18	20	0	20