
Supplementary File for "An urgent call for using real human urine in decentralized sanitation research and advancing protocols for preparing synthetic urine".

An analysis of urine research literature, specifically focusing on nutrient recovery, published over the past five years, shows an increasing trend in the use of synthetic urine (Supplementary Information, Fig. S1), with approximately 40% of these studies conducted exclusively with synthetic urine. Of particular concern is that among several publications that exclusively used synthetic urine, 21% referred to the type of urine used as "human urine" in the title of their publications.

Number	Year	Paper Title	DOI	Urine Type (Real or Synthetic)	Urine typology	Was typology explicitly stated?
1	2023	Cyanobacteria cultivation on human urine for nutrients recovery	https://doi.org/10.1016/j. algal.2023.103064	Real	Hydrolyzed	Yes
2	2023	Insights into the promotion of urine-diverting toilets based on the fertilizer efficiency of artificial phosphate ore recovered from source-separated urine	https://doi.org/10.1016/j. resconrec.2022.106807	Synthetic	Fresh	Yes
3	2023	The advantage of a two-stage nitrification method for fertilizer recovery from human urine	https://doi.org/10.1016/j. watres.2023.119932	Real	Hydrolyzed	Yes
4	2023	Ammonia recovery from source-separated hydrolyzed urine via a dual-membrane distillation in- series process	https://doi.org/10.1016/j. cej.2023.144215	Real	Hydrolyzed	Yes
5	2023	Nutrient recovery from yellow water to soil-crop systems	https://link.springer.com /article/10.1007/s11356- 022-24058-6	Real	Not stated	No
6	2023	An integrated strategy for nutrient harvesting from hydrolyzed human urine as high-purity products: Tracking of precipitation transformation and precise regulation	https://doi.org/10.1016/j. scitotenv.2022.158721	Synthetic	Hydrolyzed	Yes
7	2023	Simultaneous recovery of nutrients and water from human urine by a novel thermally activated peroxydisulfate and membrane distillation integrated system	https://doi.org/10.1016/j. cej.2023.141548	Real	Fresh	Yes
8	2023	Concentrating stabilized human urine using eutectic freeze crystallization for liquid fertilizer production	https://doi.org/10.1016/j. watres.2023.119760	Real and Synthetic	Base stablized	Yes
9	2023	A novel approach for enhancing nitrogen and hydrogen recovery from urine in microbial electrochemical gas-permeable membrane system	https://doi.org/10.1016/j. scitotenv.2023.161446	Synthetic	Fresh	Yes

					Collected fresh, no	
10	2023	Valorization of Human Urine with Mixed Microalgae Examined through Population Dynamics, Nutrient Removal, and Biogas Content	https://doi.org/10.3390/s u15086922	Real	indication of stbailization	No
11	2023	Cyanophycin production in turbidostat cultivation of cyanobacteria under phosphorus limitation on synthetic urine media	https://doi.org/10.1016/j. algal.2023.103143	Synthetic	Dilute, Hydrolzed	No
12	2023	N, P, K recovery from hydrolysed urine by Na-chabazite adsorption integrated with ammonia stripping and (K-)struvite precipitation	https://doi.org/10.1016/j. scitotenv.2022.159277	Snythetic	Hydrolyzed	Yes
13	2023	Factors influencing the recovery of organic nitrogen from fresh human urine dosed with organic/inorganic acids and concentrated by evaporation in ambient conditions	https://doi.org/10.1016/j. scitotenv.2023.163053	Real	Fresh and Acid stabilized	Yes
14	2023	Interfacial solar evaporation toward efficient recovery of clean water and concentration of nutrients from urine with polypyrrole-based photothermal conversion films	https://doi.org/10.1016/j. resconrec.2022.106645	Synthetic	Hydrolyzed	Yes
15	2023	Optimization and kinetic modeling of phosphate recovery as struvite by electrocoagulation from source-separated urine	https://link.springer.com /article/10.1007/s11356- 022-23446-2	Real	Fresh and hydrolyzed	Yes
16	2023	Urine and grey water based liquid fertilizer – Production and the response of plants	https://doi.org/10.1016/j. jenvman.2023.117248	Synthetic	Dilute possibly nitrified	No
17	2023	Norfloxacin degradation in synthetic human urine using nickel converter slag-laterite heterogeneous Electro-Fenton process	https://doi.org/10.1016/j. jwpe.2023.103723	Synthetic	Fresh	No,
18	2023	Human urine: A novel source of phosphorus for vivianite production	https://doi.org/10.1016/j. scitotenv.2023.164517	Real and Synthetic	Fresh	Yes
19	2023	Catalytic performance of rGO-Zeolite modified anode in clay biophotovoltaics system for effective urine treatment	https://doi.org/10.1016/j. ijhydene.2022.09.216	Real	Fresh	Yes
20	2023	Factors hindering the degradation of pharmaceuticals from human urine in an iron-activated persulfate system	https://doi.org/10.1016/j. jes.2022.12.022	Synthetic	Fresh and hydrolyzed	Yes
21	2023	Degradation of 75 organic micropollutants in fresh human urine and water by UV advanced oxidation process	https://doi.org/10.1016/j. watres.2023.120221	Synthetic and real	Fresh	Yes
22	2023	Simultaneous Urea and Phosphate Recovery from Synthetic Urine by Electrochemical Stabilization	https://doi.org/10.3390/ membranes13080699	Synthetic	Fresh	No
23	2022	Concentrating stabilized urine with reverse osmosis: How does stabilization method and pre- treatment affect nutrient recovery, flux, and scaling?	https://doi.org/10.1016/j. watres.2021.117970	Synthetic and real	Acid and base stabilized	Yes
24	2022	Energy efficient bioelectro-concentration and recovery system of nutrients from human urine by integrating forward osmosis	https://doi.org/10.1016/j. resconrec.2022.106253	Synthetic	Dilute partially hydrolyzed	No
25	2022	Simultaneous nutrient-energy recovery from source-separated urine based on bioelectrically enhanced bipolar membrane-driven in-situ alkali production coupling with gas-permeable membrane system	https://doi.org/10.1016/j. cej.2021.134161	Synthetic	Dilute partially hydrolyzed	No
26	2022	Assessment of K-Struvite Precipitation as a Means of Nutrient Recovery from Source Separated Human Urine	https://doi.org/10.3390/s u14031082	Synthetic	Unclear	No
27	2022	Simultaneous recovery of nutrients and power generation from source-separated urine based on bioelectrical coupling with the hydrophobic gas permeable tube system	https://doi.org/10.1016/j. scitotenv.2022.153788	Synthetic	Dilute partially hydrolyzed	Yes
28	2022	Unintentional release of antibiotics associated with nutrients recovery from source-separated human urine by biochar	https://doi.org/10.1016/j. chemosphere.2022.1344 26	Real	Dilute fresh urine (no stbailization)	Yes
29	2022	A hybrid nanofiltration and reverse osmosis process for urine treatment: Effect on urea recovery and purity	https://doi.org/10.1016/j. watres.2022.118851	Real and Synthetic	Base stabilized	Yes
30	2022	Water and nutrient recovery from stored urine by forward osmosis with an ammonium bicarbonate draw solution	https://www.frontiersin.o rg/articles/10.3389/fenvs .2022.937456/full	Real	Stored hydrolysed urine	Yes
31	2022	Donnan dialysis for phosphate recovery from diverted urine	https://doi.org/10.1016/j. watres.2022.119302	Synthetic	Fresh/and hysrolyzed	Yes
32	2022	Nitrogen and phosphorous recycling from human urine by household electrochemical fixed bed in sparsely populated regions	https://doi.org/10.1016/j. watres.2022.118467	Synthetic and real	Both were dilute and hydrolyzed	Yes

53	2021	Probing the degradation of pharmaceuticals in urine using MFC and studying their removal efficiency by UPLC-MS/MS	seppur.2021.119275 https://doi.org/10.1016/j. jpha.2020.04.006	Real	d Collected fresh	No
52	2021	Electro-concentration of urine designed for separation of sodium from nitrogen	https://doi.org/10.1016/j.	Synthetic	Ureolyzed/Hydrolyze	Yes
51	2021	Nutrients recovery from urine through struvite formation using lab-scale fluidized-bed homogeneous crystallization reactor	https://stdjsee.sciencea ndtechnology.com.vn/in dex.php/stdjsee/article/v iew/625	Real	Fresh	No
50	2021	Sustainable recovery of plant essential Nitrogen and Phosphorus from human urine using industrial coal fly ash	https://doi.org/10.1016/j. eti.2021.101985	Synth	Fresh	No
49	2021	Ammonium and potassium removal from undiluted and diluted hydrolyzed urine using natural zeolites	https://doi.org/10.1016/j. chemosphere.2020.1288 49	Real	Hydrolzed	Yes
48	2021	Fertiliser recovery from source-separated urine via membrane bioreactor and heat localized solar evaporation	https://doi.org/10.1016/j. watres.2021.117810	Real	Hydrolyzed	Yes
47	2021	Electrochemical recovery of H2 and nutrients (N, P) from synthetic source separate urine water	https://doi.org/10.1016/j. chemosphere.2020.1293 61	Synthetic	Dilute partially hydrolyzed	No
46	2021	Nutrient recovery and microalgae biomass production from urine by membrane photobioreactor at low biomass retention times	https://doi.org/10.1016/j. scitotenv.2021.147423	Real	Fresh	Yes
45	2021	Demonstration of energy and nutrient recovery from urine by field-scale microbial fuel cell system	https://doi.org/10.1016/j. procbio.2020.11.014	Real	Unlcear	No
44	2021	Optimised operational parameters for improved nutrient recovery from hydrolysed urine by bio- electroconcentratio	https://doi.org/10.1016/j. seppur.2021.119793	Synthetic	Hydrolyzed	Yes
43	2021	Phosphate recovery and simultaneous nitrogen removal from urine by electrochemically induced struvite precipitation	https://link.springer.com /article/10.1007/s11356- 020-10924-8	Synthetic	Partially/fully hdrylyzed	No
42	2021	On-site urine treatment combining Ca(OH)2 dissolution and dehydration with ambient air	https://doi.org/10.1016/j. wroa.2021.100124	Real	Real base stabilized	Yes
41	2021	Resource Recovery from Synthetic Nitrified Urine in the Hydroponic Cultivation of Lettuce (Lactuca sativa Var. capitata L.)	https://doi.org/10.3390/a gronomy11112242	Synth	Nitrified	Yes
40	2022	Stabilization and concentration of nitrogen in synthetic urine with peracetic acid and progressive freeze concentration	https://doi.org/10.1016/j. jece.2022.107768	Synthetic	Fresh	Yes
39	2022	Start-up and performance of a downflow fluidised bed reactor for biological treatment of yellow wastewater and nutrient recovery	https://doi.org/10.2166/ wst.2022.167	Real	Fresh	Yes
38	2022	Recovery of ammonium nitrate solution from urine wastewater via novel free nitrous acid (FNA)- mediated two-stage processes	https://doi.org/10.1016/j. cej.2022.135826	Real	Hydrolyzed and dilute	Yes
37	2022	Microbial fuel cell treatment energy-offset for fertilizer production from human urine	https://doi.org/10.1016/j. chemosphere.2022.1335 94	Synth and real	Hydrolyzed	Yes
36	2022	Recovering nutrients and rejecting trace organic compounds in human urine by a forward osmosis–membrane distillation (FO–MD) hybrid system	https://doi.org/10.2166/ wst.2022.311	Real	Fresh	No
35	2022	Ammonia recovery and fouling mitigation of hydrolyzed human urine treated by nanofiltration and reverse osmosis	https://pubs.rsc.org/en/c ontent/articlehtml/2022/ ew/d1ew00601k	Real	Real hydrolyzed	Yes
34	2022	Water and nutrients recovery from synthetic source-separated human urine using AGMD	https://doi.org/10.1016/j. jece.2022.107176	Synthetic	Fresh, acidic, and hydrolyxed	Yes
33	2022	A novel mixing mechanism for effective stabilisation of urea in urinals for subsequent nutrient recovery	https://journals.co.za/doi /abs/10.1016/j.sajce.202 2.07.006	Real	Base stabilized	Yes

	1					
54	2021	Urea recovery from stabilized urine using a novel ethanol evaporation and recrystallization process	https://doi.org/10.1016/j. ceja.2021.100174	Synthetic and real	Base stabilized	Yes
55	2021	Recovery of high quality water from human urine using a novel vertical up-flow forward osmosis reactor	https://doi.org/10.1016/j. seta.2021.101124	Real	Fresh	Yes
56	2021	Calcium removal from stabilized human urine by air and CO2 bubbling	https://doi.org/10.1016/j. watres.2021.117467	Real	Base stabilized	Yes
57	2021	Precipitation to remove calcium ions from stabilized human urine as a pre-treatment for reverse osmosis	https://doi.org/10.2166/ wst.2021.479	Real and Synthetic	Base stabilized	Yes
58	2021	Highly efficient phosphorus and potassium recovery from urine via crystallization process in a fluidized bed reactor system	https://doi.org/10.1016/j. jece.2021.105623	Synthetic	Dilute hydrolyzed	No
59	2021	Electrochemical system for selective oxidation of organics over ammonia in urine	https://pubs.rsc.org/en/c ontent/articlehtml/2021/ ew/d0ew01057j	Real and Synthetic	Ureolyzed/Hydrolyze d	Yes
60	2021	Struvite recovery from human urine in inverse fluidized bed reactor and evaluation of its fertilizing potential on the growth of Arachis hypogaea	https://doi.org/10.1016/j. jece.2020.104965	Synthetic	Fresh	No
61	2021	Electrochemical In Situ pH Control Enables Chemical-Free Full Urine Nitrification with Concomitant Nitrate Extraction	https://pubs.acs.org/doi/ full/10.1021/acs.est.1c0 0041	Real	Dilute, electorchemically stabilized	Yes
62	2021	Ammonia capture from human urine to harvest liquid N-P compound fertilizer by a submerged hollow fiber membrane contactor: Performance and fertilizer analysis	https://doi.org/10.1016/j. scitotenv.2020.144478	Synthetic	Hydrolzed	Yes
63	2021	Removal of pharmaceuticals from nitrified urine	https://doi.org/10.1016/j. chemosphere.2021.1308 70	Synthetic	Nitrified	Yes
64	2021	Critical flux on a submerged membrane bioreactor for nitrification of source separated urine	https://doi.org/10.1016/j. psep.2021.07.039	Real	Hydrolyzed	Yes
65	2021	Stabilization of Urea for Recovery from Source-Separated Urine Using Electrochemically Synthesized Hydrogen Peroxide	https://pubs.acs.org/doi/ full/10.1021/acsestengg. 1c00194	synthetic	Hydrolyzed	Yes
66	2021	Removal of pharmaceuticals from human urine during storage, aerobic biological treatment, and activated carbon adsorption to produce a safe fertilizer	https://doi.org/10.1016/j. resconrec.2020.105341	Real	Hydrolyzed	Yes
67	2021	Alkaline Dehydration of Human Urine Collected in Source-Separated Sanitation Systems Using Magnesium Oxide	https://www.frontiersin.o rg/articles/10.3389/fenvs .2020.619901/full?utm_s ource=dlvr.it&utm_medi um=twitter	real	Base stabilized	Yes
68	2021	Drying fresh human urine in magnesium-doped alkaline substrates: Capture of free ammonia, inhibition of enzymatic urea hydrolysis & minimisation of chemical urea hydrolysis	https://doi.org/10.1016/j. cej.2021.131026	real	Base stabilized	Yes
69	2020	Field Testing a Pilot-Scale System for Alkaline Dehydration of Source-Separated Human Urine: A Case Study in Finland	https://www.frontiersin.o rg/articles/10.3389/fenvs .2020.570637/full	Real	Base stabilized	Yes
70	2020	Preparation and characterization of a decentralized modular yellow water nutrient recovery system	https://doi.org/10.1016/j. jenvman.2020.111345	Synthetic	Partially hydrolyzed	No
71	2020	Biological nutrient recovery from human urine by enriching mixed microalgal consortium for biodiesel production	https://doi.org/10.1016/j. jenvman.2020.110111	Real	Fresh dilute	Yes
72	2020	A green method for the simultaneous recovery of phosphate and potassium from hydrolyzed urine as value-added fertilizer using wood waste	https://doi.org/10.1016/j. resconrec.2020.104793	Real and Synthetic	Hydorlyzed	Yes
73	2020	Biochar-activated peroxydisulfate as an effective process to eliminate pharmaceutical and metabolite in hydrolyzed urine	https://doi.org/10.1016/j. watres.2020.115809	Synthetic	Hydrolyzed	Yes
74	2020	A five-stage treatment train for water recovery from urine and shower water for long-term human Space missions	https://doi.org/10.1016/j. desal.2020.114634	Real	Nitrified	Yes

97	2019	precipitation and vacuum stripping	jenvman.2019.109435	Real	Hydrolyzed	Yes
96	2019	Self-Powered Bioelectrochemical Nutrient Recovery for Fertilizer Generation from Human UrineThree-stage treatment for nitrogen and phosphorus recovery from human urine: Hydrolysis,	https://doi.org/10.3390/s u11195490 https://doi.org/10.1016/j.	Real	Hydrolyzed	Yes
95	2019	Nutrient recovery and microbial diversity in human urine fed microbial fuel cel	https://doi.org/10.2166/ wst.2019.089	Real	Fresh (not stabilized)	Yes
94	2019	Efficient nutrient recovery/removal from real source-separated urine by coupling vacuum thermal stripping with activated sludge processes	https://doi.org/10.1016/j. jclepro.2019.02.181	Real	Hydrolyzed	Yes
93	2020	Phosphorous removal and high-purity struvite recovery from hydrolyzed urine with spontaneous electricity production in Mg-air fuel cell	https://doi.org/10.1016/j. cej.2019.123517	Synthetic	Hydrolyzed	Yes
92	2020	The recovery of phosphorus from source-separated urine by repeatedly usable magnetic Fe3O4@ZrO2 nanoparticles under acidic conditions	https://doi.org/10.1016/j. envint.2019.105322	Synthetic	Hydrolyzed	Yes
91	2020	Recovery of monovalent mineral salts from urine in controlled ecological life support system by nanofiltration: Feasibility study	https://doi.org/10.1016/j. desal.2020.114344	Synthetic	Fresh	No
90	2020	Effect of storage on physicochemical characteristics of urine for phosphate and ammonium recovery as struvite	https://doi.org/10.1016/j. ibiod.2020.105053	Real	Fresh and then hydrolyzed	Yes
89	2020	Recovery of ammonium nitrogen from human urine by an open-loop hollow fiber membrane contactor	https://doi.org/10.1016/j. seppur.2020.116579	Synthetic	Hydrolyzed	Yes
88	2020	Novel Isothermal Membrane Distillation with Acidic Collector for Selective and Energy-Efficient Recovery of Ammonia from Urine	https://pubs.acs.org/doi/ full/10.1021/acssusche meng.0c00643	Synthetic	Hydrolyzed	Yes
87	2020	Phosphorus and potassium recovery from human urine using a fluidized bed homogeneous crystallization (FBHC) process	https://doi.org/10.1016/j. cej.2019.123282	Synthetic	Hydrolyzed	Yes
36	2020	Selective Recovery of Phosphorus from Synthetic Urine Using Flow-Electrode Capacitive Deionization (FCDI)-Based Technology	https://pubs.acs.org/doi/ full/10.1021/acsestwater .0c00065	Synthetic	Unclear	No
35	2020	Energy recovery through reverse electrodialysis: Harnessing the salinity gradient from the flushing of human urine	https://doi.org/10.1016/j. watres.2020.116320	Real	Yes	Yes
34	2020	Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification	https://doi.org/10.1016/j. watres.2020.116223	Real	Dilute base hydroylzed	Yes
33	2020	Sanitation and dewatering of human urine via membrane bioreactor and membrane distillation and its reuse for fertigation	https://doi.org/10.1016/j. jclepro.2020.122390	Real	Hydrolyzed	Yes
32	2020	Removal of pharmaceuticals from nitrified urine by adsorption on granular activated carbon	https://doi.org/10.1016/j. wroa.2020.100057	Real	Partially nitrified	Yes
81	2020	Rejection of nitrogen species in real fresh and hydrolyzed human urine by reverse osmosis and nanofiltration	https://doi.org/10.1016/j. jece.2020.103993	Real	Fresh and hydrolyzed	Yes
80	2020	Ammonia Recovery from Hydrolyzed Human Urine by Forward Osmosis with Acidified Draw Solution	https://pubs.acs.org/doi/ full/10.1021/acs.est.0c0 2751	Real	Hydrolyzed	Yes
79	2020	Impact of acetic acid addition on nitrogen speciation and bacterial communities during urine collection and storage	https://doi.org/10.1016/j. scitotenv.2020.141010	Real	Acid Stabilzied	Yes
78	2020	Comparison of the use of functional porous organic polymer (POP) and natural material zeolite for nitrogen removal and recovery from source-separated urine	https://doi.org/10.1016/j. jece.2020.104296	Synthetic	Hydrolyzed	Yes
7	2020	Alkaline dehydration of source-separated fresh human urine: Preliminary insights into using different dehydration temperature and media	https://doi.org/10.1016/j. scitotenv.2020.139313	Real	Base stabilized	Yes
76	2020	Electrochemically Induced Precipitation Enables Fresh Urine Stabilization and Facilitates Source Separation	https://pubs.acs.org/doi/ full/10.1021/acs.est.9b0 6804	Real	Fresh	Yes
75	2020	Stabilization of source-separated urine by heat-activated peroxydisulfate	https://doi.org/10.1016/j. scitotenv.2020.142213	real	hydroluzed	Yes

119	2019	Urine nitrification with a synthetic microbial community	https://doi.org/10.1016/j. syapm.2019.126021	Synthetic	Hydrolyzed	Yes
118	2019	Oxidation of Pharmaceuticals by Ferrate(VI) in Hydrolyzed Urine: Effects of Major Inorganic Constituents	https://pubs.acs.org/doi/ full/10.1021/acs.est.9b0 0006	Synthetic	Hydrolyzed	Yes
117	2019	Optimizing the modification of wood waste biochar via metal oxides to remove and recover phosphate from human urine	https://link.springer.com /article/10.1007/s10653- 017-9986-6	Real	Hydrolyzed	Yess
116	2019	Human urine as a forward osmosis draw solution for the application of microalgae dewatering	https://doi.org/10.1016/j. jhazmat.2019.06.001	Real and synthetic	Fresh and hydrolyzed	Yes
115	2019	Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine	https://doi.org/10.1016/j. watres.2019.05.069	Real	Base stsbilized	Yes
114	2019	Membrane stripping enables effective electrochemical ammonia recovery from urine while retaining microorganisms and micropollutants	https://doi.org/10.1016/j. watres.2018.11.072	Real	Hydrolyzed	Yes
113	2019	P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources	https://doi.org/10.1016/j. scitotenv.2019.03.485	Synthetic	Stored hydrolysed urine	Yes
112	2019	Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources	https://doi.org/10.1016/j. scitotenv.2018.11.259	Snythetic	Hydrolyzed urine after ammonia stripping	Yes
111	2019	Water recovery from hydrolysed human urine samples via direct contact membrane distillation using PVDF/PTFE membrane	https://doi.org/10.1016/j. seppur.2018.10.035	Real	hydrolyzed	Yes
110	2019	NUTRIENT REMOVAL FROM HUMAN URINE BY CHEMICAL PRECIPITATION	https://www.cabdirect.or g/cabdirect/abstract/201 93484952	real	Hydrolyzed	Yes
109	2019	Optimization of algae production on urine	https://doi.org/10.1016/j. algal.2019.101667	Real ands ynthetic	Fresh	No
108	2019	Optimization studies on the production of struvite from human urine – waste into value	https://www.deswater.co m/DWT_articles/vol_155 _papers/155_2019_134. pdf	Real and synthetic	Fresh	No
107	2019	Techno-economic feasibility of recovering phosphorus, nitrogen and water from dilute human urine via forward osmosis	https://doi.org/10.1016/j. watres.2018.11.056	Real	Fresh	Yes
106	2019	Microalgae grow on source separated human urine in Nordic climate: Outdoor pilot-scale cultivation	https://doi.org/10.1016/j. jenvman.2019.02.074	Real	Hyrolzed	Yes
105	2019	Urea recovery from fresh human urine by forward osmosis and membrane distillation (FO–MD	https://pubs.rsc.org/en/c ontent/articlehtml/2019/ ew/c9ew00720b	Real and synthetic	Base and acid stabilized	Yes
104	2019	Recovery of phosphates as struvite from urine-diverting toilets: optimization of pH, Mg:PO4 ratio and contact time to improve precipitation yield and crystal morphology	https://doi.org/10.2166/ wst.2019.371	Synthetic	Hydrolyzed (no urea in the recipe	No
103	2019	Preliminary results for start-up and adaptation of an EGSB reactor for valorization and treatment of fresh urine	doi: 10.5004/dwt.2019.24935	Real	Partially hydrolyzed	Yes
102	2019	Multi-functional microbial fuel cells for power, treatment and electro-osmotic purification of urine	https://doi.org/10.1002/j ctb.5792	Real	Hydrolyzed	No
101	2019	Comparison of different K-struvite crystallization processes for simultaneous potassium and phosphate recovery from source-separated urine	https://doi.org/10.1016/j. scitotenv.2018.09.232	Real	Based stabilized	Yes
100	2019	Optimisation of a forward osmosis and membrane distillation hybrid system for the treatment of source-separated urine	https://doi.org/10.1016/j. seppur.2018.11.003	Synthetic	Fresh and stored	Yes
99	2019	Recovery of nitrogen and phosphorus from human urine using membrane and precipitation process	https://doi.org/10.1016/j. jenvman.2019.06.046	Real	Hydrolyzed	No
98	2019	Anaerobic ureolysis of source-separated urine for NH3 recovery enables direct removal of divalent ions at the toilet	https://doi.org/10.1016/j. watres.2018.10.021	Real	Collected fresh and then hydrolyzed	Yes

120	2019	Phosphorus recovery from urine using cooling water system effluent as a precipitant	https://doi.org/10.1016/j. jenvman.2019.05.057	Real
-----	------	---	---	------

Fredh and	Yes
hydrolysed	165