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APPENDIX S1

Marker amplifications, sequencing and ITS haplotype reconstructions
The same PCR protocol was used for amplifications of all markers. The 30 L reaction mix contained 50-100 ng template DNA, 3 L of 10× Taq buffer (MD-BIO Inc., Taiwan), 2.4 L of 2.5 mM dNTP mixture (Genemark, Taiwan), 1.5 L each of 10 mM forward and reverse primers, and 0.24 L of Taq DNA polymerase (MD-BIO Inc.). Primer pairs for corresponding markers were listed in Table S1. Performed with an ABI 2720 Thermal Cycler (Applied Biosystems, USA), the following thermal profile was used: 94C 3 min; 35 cycles of 94C 45 s, 55C 45 s and 72C 1.5 min; 72C 7 min. PCR products were checked with 1% TBE agarose gel, purified with a Viogene Gel/PCR DNA Isolation System kit (Viogene, Taiwan) and sequenced on an ABI 3730 XL DNA Analyzer (Applied Biosystems).
[bookmark: OLE_LINK5][bookmark: OLE_LINK6]Approaches as follows were adopted in resolving the two ITS haplotypes for individual plants each showing at this marker as a heterozygote. First, Flot et al.’s (2006) approach was applied to each that showed indel polymorphism. Briefly, when read in one direction, each such individual would be characterised by having double peaks on the chromatogram only downstream the indel; complementary information from the forward and reverse chromatograms can thus be used to resolve the part showing superposed nucleotide signatures. A number of internal primers (listed in Table S1) were used for obtaining clear forward and reverse chromatograms that flanked specific indels, and the two haplotypes per individual were resolved with the aid of the online program INDELLIGENT (Dmitriev & Rakitov 2008).
[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK7][bookmark: OLE_LINK8]	Second, among heterozygous individuals that showed only single-nucleotide polymorphisms, the Bayesian algorithm implemented in PHASE 2.1 (Stephens & Donnelly 2003; Stephens et al. 2001) was used for those each containing two or more polymorphic sites (the two haplotypes for each of those showing only one single-nucleotide polymorphic site were directly obtained). With the PHASE input prepared in SEQPHASE (Flot 2010), we performed ten replicate runs of Markov chain Monte Carlo (MCMC), each run for 15,000 iterations (10 iterations per sample) under the model allowing intragenic recombination. Already known haplotypes, including those inferred from indel polymorphisms as described above, were included to facilitate phasing. For each individual showing convergent results across replicate runs, its inferred pair of haplotypes was accepted when such a pair received an estimated posterior probability (PP) of >0.9.
	Finally, for heterozygous individuals unable to be resolved using either of the former two approaches, such samples were resolved experimentally via TA-cloning. To this end, PCR was performed as described above except that a Phusion High-Fidelity Taq (NEB, USA) was used in replacement of the normal Taq, so to reduce PCR-induced nucleotide changes; the initial denaturation of such PCR was at 98C following the manufacturer’s instruction. The PCR products were ligated to the pGEM-T Easy Vectors (Promega, USA) and were together transformed into the HITTM-DH5 competent cells (RBC Bioscience, Taiwan) by heat shock. Transformants were grown overnight in Luria-Bertani (LB) containing 50 ng/L ampicillin, and successfully transformed colonies were initially selected via white-blue screening followed by confirmation with amplifications and gel electrophoresis. The selected colonies were further grown in LB with ampicillin for 10-12 hours, from which the plasmid DNA was then isolated using a Viogene Plasmid DNA Extraction System (Viogene, Taiwan) according to the manufacturer’s protocol. For each individual, we sequenced 8–12 clones to confirm its two ITS haplotypes. With thus experimentally resolved haplotypes included as references, additional ten PHASE runs were performed, so to confirm that every Taxus individual had its inferred pair of haplotypes supported with a PP of >0.9.




	Table S1 Primers used in this study, with internal primers newly designed for aiding resolving ITS heterozygotes marked by star symbols.

	Marker
	Primer sequence (5’ to 3’)
	Direction
	Source

	trnL-F
	trnc: CGAAATCGGTAGACGCTACG
	Forward
	Taberlet et al. (1991)

	
	trnf: ATTTGAACTGGTGACACGAG
	Reverse
	Taberlet et al. (1991)

	trnH-psbA
	trnH: CGCGCATGGTGGATTCACAATCC
	Forward
	Tate and Simpson (2003)

	
	psbA: GTTATGCATGAACGTAATGCTC
	Reverse
	Sang et al. (1997)

	petG-trnP
	petG: GGTCTAATTCCTATAACTTTGGC
	Forward
	Hwang et al. (2000)

	
	trnP: GGGATGTGGCGCAGCTTGG
	Reverse
	Hwang et al. (2000)

	atpI-H
	atpI: TATTTACAAGYGGTATTCAAGCT
	Forward
	Shaw et al. (2007)

	
	atpH: CCAAYCCAGCAGCAATAAC
	Reverse
	Shaw et al. (2007)

	ITS
	ITS-Leu: GTCCACTGAACCTTATCATTTAG
	Forward
	Baum et al. (1998)

	
	ITS4: TCCTTCCGCTTATTGATATGC
	Reverse
	White et al. (1990)

	
	ITS-i1*: GCACGAAATAATCTGTACGGC 
	Reverse
	This study

	
	ITS-i2*: GTCTTCGCAAGTTGTTCTCC 
	Forward
	This study

	
	ITS-i3*: CTGCAACCAGAGGCGATG 
	Reverse
	This study

	
	ITS-i4*: GGAGTTCGGACTGGAGTTC 
	Forward
	This study

	
	ITS-i5*: CAAATGTTCAACGGTCTGC 
	Reverse
	This study

	
	ITS-i6*: CCGTACAGATTATTTCGTGC 
	Forward
	This study





	Table S2 GenBank chloroplast genomes that are used in the genealogical analysis of this study.

	Taxon
	Voucher
	Accession

	Taxusa
	
	

	T. calcicola
	GLM164262
	MH390451

	
	GLM123951
	MH390461

	
	GLM123950
	MH390489

	T. chinensis
	TCP0102
	MH390476

	
	TCP0202
	MH390478

	
	TCP0303
	MH390442

	T. florinii
	TFP0302
	MH390487

	
	TFP0402
	MH390463

	
	ML04
	MH390473

	Emei type
	TEP0101
	MH390456

	
	TEP0202
	MH390472

	
	TEP0303
	MH390475

	Qinling type
	QL1
	MH390444

	
	
	

	Outgroup
	
	

	Pseudotaxus chieniib
	PCHIE20171209
	MH023407

	Cephalotaxus mannic
	Y. Ji and X. Gong 003
	MT555084

	a Fu et al. (2019); b Wang et al. (2019); Ji et al. (2021)





	Table S3 GenBank ITS sequences from Liu et al. (2011) that are used in the genealogical analysis of this study.

	Taxon
	Longitude/Latitude
	Voucher
	Accession

	Taxusa
	
	
	

	T. calcicola
	105° 35'E/25° 01'N
	GLM-06001
	HM590953

	
	104° 46'E/23° 23'N
	GLM-2357
	HM590954

	
	104° 38'E/20° 53'N
	NVSDE82
	HM590955

	T. chinensis
	104° 13'E/32° 39'N
	LJ-05-999
	HM590947

	
	107° 15'E/32° 48'N
	MMO 05-597
	HM590948

	
	110° 05'E/31° 27'N
	MMO 05-507
	HM590949

	T. florinii
	100° 08'E/27° 01'N
	GM-2441
	HM590943

	
	099° 10'E/28° 16'N
	GM-24171
	HM590944

	
	100° 47'E/27° 36'N
	GM-24201
	HM590945

	
	101° 11'E/28° 04'N
	GF-040911-29
	HM590946

	Emei type
	103° 03'E/28° 43'N
	GLM-07704
	HM590950

	
	103° 03'E/28° 43'N
	Psh08
	HM590951

	
	103° 15'E/27° 13'N
	03-0606-8
	HM590952

	Qinling type
	107° 04'E/33° 51'N
	MMO 05-694
	HM590961

	
	111° 14'E/33° 48'N
	LJ-05-1024
	HM590962

	
	113° 19'E/35° 45'N
	LJ-05-1062
	HM590963

	
	
	
	

	Outgroup
	
	
	

	Pseudotaxus chieniib
	-
	Ps3
	MT735121

	Cephalotaxus mannic
	-
	C111
	JF976108

	a Liu et al. (2011); b Möller et al. (2020); China Plant BOL Group et al. (2011)




Settings for demographic priors
Demographic parameters of an isolation with migration (IM, Hey 2010; Hey & Nielsen 2007) model include rescaled post-split migration rates (m; m = M/u where M is the per generation proportion of the population as the migrants, and u is the geometric mean of the locus-wide per generation mutation rates), composite parameters for effective population sizes (q; q = 4Ne×u for a population of a diploid organism with Ne individuals) and composite parameters for inter-taxon divergence times (t; t = T×u where T is the divergence time as the number of generations). Truncated uniform priors are implemented in the program IMA2 (Hey 2010; Hey & Nielsen 2007) for all above parameters. We consulted Hey (2011) to set upper bounds of truncated uniform priors, followed by adjustments according to results from exploratory IM runs. Specifically, Hey (2011) suggested upper bounds as 2/qmax, 5×qmax and 2×qmax for m, q and t, respectively, where qmax was the maximum q value among those of the focal taxa derived based on autosomal markers; in our case, we derived qmax based on ITS. Using θW as an estimator of q, we obtained qmax = 2.88 per locus (Table S4). Accordingly, we set the upper bound of t to 6, slightly higher than 2×qmax (= 5.76). We set the upper bounds of m and q to 1.5 (higher than 2/qmax = 0.69) and 9 (lower than 5×qmax = 14.40), respectively, after inspections on exploratory run results.
Using haploid organisms as a modeling template, the MultiTypeTree (MTT, Vaughan et al. 2014) model incorporates a Ne×g parameter for each of the focal population, with Ne and g representing the effective population size and the generation time (in the same time unit as that used for the tree calibration), respectively. When applied to Taxus trees, which have diploid individuals of separate sexes and have cpDNA inherited paternally (Anderson & Owens 1999), Ne values of the cp- and ITS-based MTT models refer to the numbers of genes of corresponding markers in a population; therefore, for any specific Taxus taxon, Ne is four times larger in the ITS-based model than in the cp-based one. In both MTT analyses of this study, we specified truncated uniform priors for Ne×g parameters, each of which had an upper bound set as 1. This upper bound was selected as an arbitrary value that was much larger than the maximum Ne×g value among those of the two focal Taxus taxa (Taiwan T. phytonii and Philippine T. phytonii) derived based on the ITS dataset. More specifically, we estimated Ne×g with the formula Ne×g = θ/2u, where u was the clock rate, and θ = 2Ne×u×g for ITS (u×g was in a unit of substitutions per nucleotide site per generation). We obtained a maximum θ value of the two focal taxa as 0.00187 per nucleotide site (Table S4). Calculated with this θ value as well as with the ITS mutation rate as 0.011 substitutions per nucleotide site per 10 million years (see ‘Clock rates of chloroplast DNA and ITS for Taxus’), we then obtained a maximum Ne×g value as 0.085. This Ne×g value was much smaller than our set upper bound for the truncated uniform prior (= 1).
The MTT model further incorporates the migration rate parameter as mij = Mij×Nei/Nej, where Mij is the accumulated proportion of population j as the migrants from population i in one time unit (= 10 million years in our case), and Nei and Nej are effective population sizes of populations i and j, respectively. For each such mij parameter in either cp- or ITS-based analysis, we specified a lognormal prior with a log(mean) = 1 and log(standard deviation) = 4, which covered a broad range of potential mij values. Specifically, this prior setting corresponded to a proportion of migrants per generation ranging from exp(-4)×25/10,000,000 = 4.57E-8 to exp(4)×25/10,000,000 = 1.36E-4 when Nei = Nej, assuming a generation time of Taxus as 25 years (Wang et al. 2006).


	Table S4 ITS-derived Watterson’s (1975) θW values for Taxus mairei (MA), Taiwan T. phytonii (TW) and Philippine T. phytonii (PH).

	
	MAa
	TW
	PH

	per nucleotide site
	0.00251
	0.00187
	0.00125

	per locus
	2.88
	2.09
	1.43

	a Exclude two sequences belonging to the Qinling haplogroup (see Fig. 3B)





Clock rates of chloroplast DNA and ITS for Taxus
CpDNA and ITS c lock rates (u) were estimated using the formula: u = D/2T, where D and T stood for sequence divergence and divergence time, respectively, between Taxus and its sister monotypic genus species, Pseudotaxus chienii. We obtained the following T estimates from Liu et al. (2013) who reconstructed a dated phylogeny for 39 extant gymnosperm genera based on two cpDNA datasets and a total of 11 fossil calibration points: mean value = 93.3 Mya, 95% highest posterior density interval = 47.4–139.1 Mya.
To obtain D, we first compiled cp and ITS alignments for selected Taxus taxa alongside P. chienii (Table S5). We then estimated a D value for each Taxus-Pseudotaxus taxon pair using a maximum likelihood estimator in DIVEIN (Deng et al. 2010), with which we obtained an average D value over all comparisons. We specified nucleotide substitution models as GTR+G and HKY for cpDNA and ITS, respectively; both were selected in JMODELTEST 2.1.3 (Darriba et al., 2012) based on the Bayesian information criterion (BIC). Resultant average D values were 0.113 and 0.207 substitutions per site for cpDNA and ITS, respectively. Based on the formula described above, we then obtained cpDNA and ITS mean clock rates (and 95% confidence sets) as 0.006 (0.004–0.012) and 0.011 (0.007–0.022) substitutions per site per 10 million years, respectively. 
We incorporated these above clock rates into the MultiTypeTree (MTT) analyses using the following lognormal priors: log(mean) = -4.93, log(standard deviation) = 0.27 for cpDNA; log(mean) = -4.50, log(standard deviation) = 0.27 for ITS. We also included in the isolation with migration (IM) analysis the locus-wide estimates of these clock rates: 1.67E-6 (9.70E-7–2.62E-6) and 1.24E-6 (7.26E-7–1.89E-6) mutations per year for cpDNA and ITS, derived with locus lengths of 2321 and 1119 base pairs, respectively.


	Table S5 GenBank accessions of Taxus and Pseudotaxus sequences used for deriving clock rates of chloroplast DNA and ITS.

	Taxon
	cpDNAa
	ITS

	Taiwan T. phytonii
	PP394461
	PP388520

	
	PP394750
	

	
	PP395039
	

	
	PP395328
	

	T. mairei
	PP394351
	PP388300

	
	PP394640
	

	
	PP394929
	

	
	PP395218
	

	Huangshan Taxus
	PP394372
	PP388342

	
	PP394661
	

	
	PP394950
	

	
	PP395239
	

	T. calcicola
	MH390461
	HM590953

	T. chinensis
	MH390476
	HM590947

	T. florinii
	MH390487
	HM590943

	Emei Taxus
	MH390456
	HM590952

	Qinling Taxus
	MH390444
	HM590961

	P. chienii
	MH023407
	MT735121

	a atpI-H, petG-trnP, trnH-psbA and trnL-F accession numbers are provided in consecutive rows for Taiwan T. phytonii, T. mairei and Huangshan Taxus; for other taxa, the accession numbers for the complete chloroplast genomes are given





APPENDIX S2

Figure S1 Distributions of (a) chloroplast and (b) ITS haplotypes over sampling sites (coded as in Fig. 1 of the main text).
[image: ]








Figure S2 Marginal posterior distributions of the divergence time parameters (t) obtained from an IM analysis with data inputted (the upper plot) or only with priors (the lower plot). Parameters t1 and t2 denote divergence between Taiwan T. phytonii and Philippine T. phytonii and between T. mairei and the common ancestor of the former two taxa, respectively.

[image: ]


Figure S3 Posterior estimations from the MultiTypeTree analyses for the numbers of Taxus lineage transferring events between Taiwan (TW) and the Philippines (PH). Blue bars denote the 95% confidence sets.

[image: ]


	Table S6 Ages (million years ago) of selected tree nodes (#1–4) estimated from the MultiTypeTree analyses. For each marker type, values are shown in consecutive rows as means, lower 95% highest probability density limits (95HPDIs) and upper 95HPDIs. See Fig. 4 of the main text for node positions in the gene trees.

	Marker
	#1
	#2
	#3
	#4

	cpDNA
	0.769
	0.129
	0.246
	0.027

	
	0.122
	0.001
	0.010
	<0.001

	
	1.737
	0.390
	0.728
	0.146

	ITS
	2.491
	1.076
	0.572
	0.323

	
	0.774
	0.154
	0.069
	0.008

	
	4.787
	2.492
	1.293
	0.932



APPENDIX S3

Introgression levels at chloroplast and biparental nuclear loci for Taxus
For Taxus (as well as for other dioecious plants each having cpDNA paternally inherited), we derive introgression levels at chloroplast (cp) and biparental nuclear (nr) loci under circumstances where unidirectional introgression has been carried out via either pollen dispersal alone or seed dispersal alone. First consider circumstances where pollen dispersal alone is in charged. Let Mp be the per generation proportion of the pollen pool for the ‘local’ species that is contributed from the ‘exotic’ one. In the local species, the proportion of introgressed cp genes (Icp) in generation t would be related to that in conspecific males (Icp-m) in generation t-1 by equation (1).

Icp(t) = Mp + (1-Mp)×Icp-m(t-1) ……………………………………………………… (1)

In this equation, the first term on the right-hand side of the equal sign accounts for individual plants fathered by males of the exotic species, and the second term accounts for those fathered by conspecific males each carrying an earlier introgressed cp gene. In fact, in each generation the cp introgression levels would be the same in males and in females, assuming no differences among pollens of any kind (local vs. exotic pollen; male-determining vs. female-determining pollen) in fertilizing the seeds. Expressed in equations, Icp-m(t) = [Nm×Mp + Nm×(1-Mp)×Icp-m(t-1)]/Nm and Icp-f(t) = [Nf×Mp + Nf×(1-Mp)×Icp-m(t-1)]/Nf, where m and f, respectively, are proportions of males and females of the local species with a total population size of N. This renders Icp-m(t) = Icp-f(t) = Mp + (1-Mp)×Icp-m(t-1). Accordingly, we can simplify equation (1) as equation (2).

Icp(t) = Mp + (1-Mp)×Icp(t-1) ………………………………………………………… (2)

Now consider the proportion of introgressed nr genes (Inr) in the local species under the influence of Mp. Such an introgression level in generation t would be related to those in conspecific males and females (Inr-m and Inr-f, respectively) in generation t-1 by equation (3).

Inr(t) = 0.5×[Mp + (1-Mp)×Inr-m(t-1)] + 0.5×Inr-f(t-1) ………………………………….. (3)

Here the first term on the right-hand side of the equal sign accounts for chromosomes of individual plants obtained from their fathers (via pollen from either the same or different species), and the second term accounts for those obtained from their mothers (via ovules from conspecific females), each of which contributes to a half of the total genetic composition of any individual plant. Given that each seed to give rise to an individual plant of the local species, regardless of its sex, has its one chromosome the same likely sourced from a pollen of any kind and also has its second chromosome the same likely sourced from an ovule of any kind, we derive Inr-m(t) = Inr-f(t) for any generation t. It follows that equation (3) can be simplified as equation (4).

Inr(t) = 0.5×[Mp + (1-Mp)×Inr(t-1)] + 0.5×Inr(t-1) ……………………………………... (4)

Using equations (2) and (4), we show in Figure S4 accumulations of Icp and Inr over generations under the effect of Mp, respectively. This reveals a constantly higher Icp than Inr in each specific generation since the pollen dispersal across species started.
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Figure S4 An imaginary case showing introgression levels at chloroplast (cp) and nuclear (nr) loci in a dioecious plant species with cpDNA paternally inherited when this species receives genes from a second one via pollen dispersal. We assume in this case a constant per generation pollen dispersal rate (Mp) = 0.0001 to give rise to individual plants in generation 1 and ever since (i.e. cp and nr introgression levels in generation 0 are both zero).

	Next, we consider unidirectional introgression via seed dispersal alone. Let Ms be the per generation proportion of the seeds in the territory of the local species sent from the exotic one. To account for the fact that seed can have different sexes and that the sex ratio can vary across species, we specify mloc and mexo as proportions of the seeds of the local and the exotic species as males, respectively (female proportions are floc = 1- mloc and fexo = 1 - mexo). The cp introgression level in the local species, Icp, would follow equation (5) where the first term on the right-hand side of the equal sign accounts for seeds from the exotic species in the focal generation, and the second term account for those of own species fathered by conspecific males in the last generation each carrying an introgressed cp gene.

Icp(t) = Ms + (1-Ms)×Icp-m(t-1) ……………………………………………………… (5)

To calculate Icp with this equation, we also need to know how Icp-m would change from one generation to the next one. This would be:
Icp-m(t) = [NMs×mexo + (Nmloc-NMs×mexo)×Icp-m(t-1)]/Nmloc; N is the population size of the local species. On the right-hand side of the equal sign of this equation, the first term of the numerator counts the number of males from the exotic species, and the second term of the numerator counts the number of males from the local species each carrying an introgressed cp gene. After algebraic operations, we obtain equation (6).

Icp-m(t) = Ms×mexo/mloc + (1-Ms×mexo/mloc)×Icp-m(t-1) ………………………………. (6)

Equation (7) shows the nr introgression level in the local species, Inr, in response to Ms. Here the first term on the right-hand side of the equal sign accounts for seeds from the exotic species, and the second term accounts for those of own species each having a ‘pollen site’ of the two sites of a nr locus contributed by an introgressed nr gene in a conspecific male and/or having the ‘ovule site’ contributed by an introgressed nr gene in a conspecific female in the last generation; 0.5 in the second term stands for the fact that each introgressed nr gene would contribute to - once passed - a half of the total genetic composition of the offspring at that locus in the next generation.

Inr(t) = Ms + 0.5×(1-Ms)×(Inr-m(t-1) + Inr-f(t-1))………………………………………. (7)

The dynamics of the nr introgression level in males of the local species would be:
Inr-m(t) = [NMs×mexo + 0.5×(Nmloc-NMs×mexo)×(Inr-m(t-1) + Inr-f(t-1))]/Nmloc 
After algebraic operations, we obtain equation (8).

Inr-m(t) = Ms×mexo/mloc + 0.5×(1-Ms×mexo/mloc)×(Inr-m(t-1) + Inr-f(t-1)) ………………. (8)

Similarly, we derive equation (9) for the dynamics of the nr introgression level in females of the local species.

Inr-f(t) = Ms×fexo/floc + 0.5×(1-Ms×fexo/floc)×(Inr-m(t-1) + Inr-f(t-1)) …………………... (9)

Using equations (5)–(6) and (7)–(9), we show in Figure S5 accumulations of Icp and Inr over generations under the effect of Ms, respectively, providing different combinations of sex ratios in the seeds from the local versus in the exotic species. When the sex ratio is the same between the two species, Icp and Inr show the same accumulation rate (Fig. S5a). When there are proportionally more males and more females in the exotic species than in the local one, Icp values would accumulate faster and slower compared to Inr values, respectively (Fig. S5b and S5c, respectively). 

	Equations (1)–(9) derived above hold for each of the two species showing bidirectional introgression with each other once the introgression rates in both directions are low, so the chance that a cp/nr gene sent out earlier later introgresses back is negligible.
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Figure S5 Imaginary cases showing introgression levels at chloroplast (cp) and nuclear (nr) loci in a dioecious plant species with cpDNA paternally inherited when this species receives genes from a second one via seed dispersal. In each case, a constant per generation seed dispersal rate (Ms) = 0.0001 is assumed to occur since generation 1 (cp and nr introgression levels in generation 0 are both zero). Cases (a), (b) and (c) present situations, respectively, when the male proportion of the local species (mloc) is the same as, lower than and higher than that of the exotic species (mexo).
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