Appendix (Pseudocode):
for each of the hybrid algorithms (HA) used (e.g., biography-based optimization (BBO), backtracking search algorithm (BSA), teaching-learning-based algorithm (TLBO), cuckoo optimization algorithm (COA), multi-verse optimization (MVO),) we need to process like below:
	1.BBO-MLP

	Initialize BBO parameters: 
    Population size (N), migration rate (λ), mutation rate (μ)
Initialize ANN parameters as unknown hyperparameter: 
    Number of layers (L), neurons per layer (n), learning rate (α)
     n1 and n2 for the number of neurons
Create initial population of ANNs with random weights W
For each generation:
    Evaluate fitness f_i of each ANN_i in the population using AUC on training data
    Sort population based on fitness
  
    For each ANN_i:
        For each dimension j:
            Perform migration:
                If rand < λ:
                    Select another ANN_k based on fitness
                    W_ij = W_kj
            Perform mutation:
                If rand < μ:
                    W_ij = W_ij + δ (where δ is a small random value)
    Replace worst-performing solutions with new ones

Select the best ANN based on fitness
Train the best ANN using backpropagation on the training data:
    W = W - α * ∇E (where ∇E is the gradient of the error)
Evaluate the trained ANN on the testing data
Return the trained ANN and its performance metrics (AUC, accuracy)



 
	2. BSA-MLP

	Initialize BSA parameters: 
    Population size (N), maximum iterations (T)
Initialize ANN parameters as unknown hyperparameter: 
    Number of layers (L), neurons per layer (n), learning rate (α)
     n1 and n2 for the number of neurons
Create initial population of ANNs with random weights W

For each generation t = 1 to T:
    Create trial population W_trial by perturbing the current population W:
        W_trial = W + F * (W_rand - W) (where W_rand is a random solution, F is a scaling factor)
    
    Evaluate fitness f_trial of W_trial using AUC on training data
    
    For each ANN_i:
        If f_trial_i is better than f_i:
            W_i = W_trial_i
    
Select the best ANN based on fitness
Train the best ANN using backpropagation on the training data:
    W = W - α * ∇E (where ∇E is the gradient of the error)
Evaluate the trained ANN on the testing data
Return the trained ANN and its performance metrics (AUC, accuracy)



	3. TLBO-MLP

	Initialize TLBO parameters: 
    Population size (N), maximum iterations (T)
Initialize ANN parameters as unknown hyperparameter: 
    Number of layers (L), neurons per layer (n), learning rate (α)
     n1 and n2 for the number of neurons
Create initial population of ANNs with random weights W

For each generation t = 1 to T:
    Teacher Phase:
        Identify the best solution W_teacher
        For each ANN_i:
            W_i = W_i + r * (W_teacher - T_mean) (where r is a random number, T_mean is the mean of the solutions)
    
    Learner Phase:
        For each ANN_i:
            Select another random ANN_j:
                If f_i < f_j:
                    W_i = W_i + r * (W_i - W_j)
                Else:
                    W_i = W_i + r * (W_j - W_i)
    
    Evaluate fitness f_i of each ANN_i using AUC on training data
    
Select the best ANN based on fitness
Train the best ANN using backpropagation on the training data:
    W = W - α * ∇E (where ∇E is the gradient of the error)
Evaluate the trained ANN on the testing data
Return the trained ANN and its performance metrics (AUC, accuracy)




	4. COA-MLP

	Initialize COA parameters: 
    Population size (N), discovery rate (pa)
Initialize ANN parameters as unknown hyperparameter: 
    Number of layers (L), neurons per layer (n), learning rate (α)
     n1 and n2 for the number of neurons
Create initial population of ANNs with random weights W

For each generation:
    Generate new solutions W_new by random walk and Levy flights:
        W_new = W + α * Levy(λ) (where α is a step size, Levy(λ) is a random walk)
    
    Evaluate fitness f_new of W_new using AUC on training data
    
    For each ANN_i:
        If f_new_i is better than f_i:
            W_i = W_new_i
        
    Replace a fraction pa of the worst solutions with new random solutions
    
Select the best ANN based on fitness
Train the best ANN using backpropagation on the training data:
    W = W - α * ∇E (where ∇E is the gradient of the error)
Evaluate the trained ANN on the testing data
Return the trained ANN and its performance metrics (AUC, accuracy)




	5. MVO-MLP

	Initialize MVO parameters: 
    Population size (N), maximum iterations (T), wormhole existence probability (WEP), white hole probability (WHP)
Initialize ANN parameters as unknown hyperparameter: 
    Number of layers (L), neurons per layer (n), learning rate (α)
     n1 and n2 for the number of neurons
Create initial population of ANNs with random weights W

For each generation t = 1 to T:
    Evaluate fitness f_i of each ANN_i using AUC on training data
    
    For each ANN_i:
        For each dimension j:
            Update position based on wormhole and white hole probabilities:
                If rand < WHP:
                    Select another ANN_k based on fitness
                    W_ij = W_kj
                If rand < WEP:
                    W_ij = W_ij + TDR * (rand - 0.5) * (Xmax - Xmin) (where TDR is the traveling distance rate, Xmax and Xmin are boundaries)
    
    Perform exploitation and exploration based on interaction of universes
    
Select the best ANN based on fitness
Train the best ANN using backpropagation on the training data:
    W = W - α * ∇E (where ∇E is the gradient of the error)
Evaluate the trained ANN on the testing data
Return the trained ANN and its performance metrics (AUC, accuracy)




The pseudo-code outlines integrating an ANN with a Backtracking Search Algorithm to optimize its weights and biases. The specifics of the crossover, mutation, and evaluation functions would need to be tailored to the particular problem and the ANN architecture being used.
1. Initialize ANN and HA
2. BSA Phases
3. Train ANN with optimized weights
	1. Initialize ANN and HA

	Define ANN structure (number of layers, neurons per layer)
Initialize weights and biases of ANN randomly

Define HA parameters:
    population_size
    max_iterations
    crossover_rate
    mutation_rate

Initialize population:
    For i = 1 to population_size:
        Initialize individual i with random ANN weights and biases

	2. HA Phases

	For iteration = 1 to max_iterations:

    # Phase 1: Initialization
    If iteration == 1:
        Save the initial population as historical_population
    End If
    
    # Phase 2: Selection-I
    For each individual in the population:
        Select a random individual from historical_population
    End For
    
    # Phase 3: Mutation
    For each individual in the population:
        Create a mutant individual by adding random variations to the individual
        Ensure mutant individual is within bounds
    End For
    
    # Phase 4: Crossover
    For each individual in the population:
        Generate a crossover individual by combining the mutant and the current individual based on crossover_rate
    End For
    
    # Phase 5: Selection-II
    For each individual in the population:
        If the crossover individual is better than the current individual:
            Replace the current individual with the crossover individual
        End If
    End For
    
    # Update historical_population with the current population
    Update historical_population with current population

End For


	3. Train ANN with Optimized Weights

	plaintext
Copy code
Select the best individual from the final population
Set ANN weights and biases to those of the best individual

Train ANN on the training dataset using optimized weights and biases
Evaluate ANN performance on the validation dataset



Detailed Explanation
1. Initialize ANN and HA:
Define the structure of the ANN (e.g., number of layers, neurons in each layer).
Randomly initialize the weights and biases of the ANN.
Define the parameters for the BSA, including population size and the number of iterations.
Initialize a population of individuals, each representing possible weights and biases for the ANN.
2. HA Phases:
Initialization: Store the initial population.
Selection-I: Select random individuals from the historical population.
Mutation: Create mutant individuals by introducing variations.
Crossover: Combine mutant individuals with current individuals to generate crossover individuals.
Selection II: Replace current individuals with crossover individuals if they perform better.
Update the historical population for the next iteration.
3. Train ANN with Optimized Weights:
After HA optimization, select the best individual (set of weights and biases).
Use these weights and biases to initialize the ANN.
Train the ANN on the training dataset and evaluate its performance on a validation dataset.
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