Climatology, Trends and Future Projections of Aerosol Optical Depth over

the Middle East and North Africa region in CMIP6 Models

Ravi Kumar Kunchala^{1,4}, Raju Attada^{3,4}, Rama Krishna Karumuri^{2,4}, Vivek Seelanki^{5,6},

Bhupendra Bahadur Singh 7, Karumuri Ashok 2,4 and Ibrahim Hoteit 2,4,*

¹Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India

²Physical Science and Engineering Division, King Abdullah University of Science and

Technology, Thuwal, Kingdom of Saudi Arabia

³Department of Earth and Environmental Sciences, Indian Institute of Science Education and

Research Mohali, Mohali, India

⁴Climate Change Center, National Center for Meteorology, Jeddah, Kingdom of Saudi Arabia

⁵University of Washington, Cooperative Institute for Climate Ocean and Ecosystem Studies,

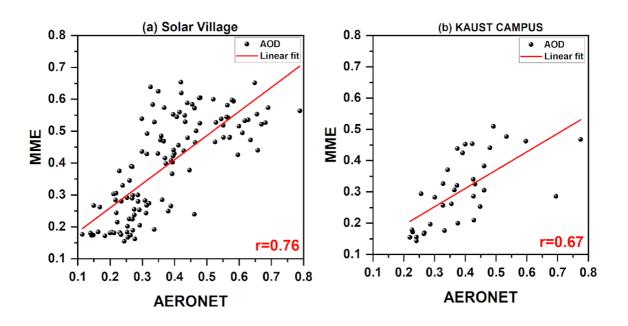
Seattle, WA, USA,

⁶NOAA Pacific Marine Environmental Laboratory, Seattle, WA, USA.

⁷Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of

Earth Sciences, India

*Corresponding author:


Prof. Ibrahim Hoteit

Physical Science and Engineering Division

King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900, Saudi

Arabia

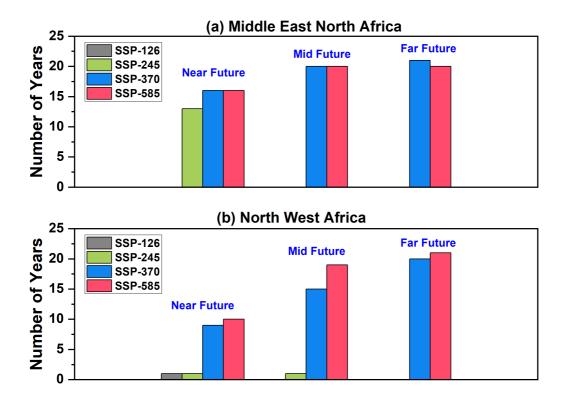

E-mail: ibrahim.hoteit@kaust.edu.sa

Figure S1: Comparison of AOD from AERONET observations and MME AOD over a) Solar Village and b) KAUST CAMPUS.

Figure S2: Area averaged changes of AOD (in percentage) with respect to the historical simulations (1995-2014 baseline) over three regions.

Figure S3: shows number of extreme AOD years under four SSP scenarios during near, mid and far future time slices