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APPENDIX A
MATHEMATICAL PROPERTIES OF HEURISTICS UNDER

TIME PRESSURE

A. Discounted Cumulative Probability Gain (ProbGain)

Proposition 1. A sufficient condition for ProbGain to use
all p features is that the allowable time tT to make a decision
satisfies:

tT ≥ λp

ln(1 + α
p )

(1)

where α = vI(xp)/vI(x1) is the ratio of information values
between the least informative feature and the most informative
feature.

Proposition 2. A sufficient condition for ProbGain to use
1 (the least possible number of features to use) feature is that
the allowable time to make a decision tT satisfies

tT ≤ λ

ln(p)
(2)

Proposition 3.
Monotonicity with respect to allowable time tT for a clas-

sification task with features {xi}pi=1, HProbGain(tT , {xi}pi=1)
satisfies:

HProbGain(tT,2, {xi}pi=1) ≥ HProbGain(tT,1, {xi}pi=1) (3)

for ∀tT,1, tT,2, tT,2 > tT,1

Propositions 1 and 2 indicate the behavior of ProbGain
under “extreme” conditions. Notably, proposition 1 shows that
as the allowable time tT ≥ λp

ln(1+α
p ) , the heuristic uses all

features to make the classification decision (i.e., converges
to the “optimal strategy,” which uses all features to make a
decision). In addition, according to Proposition 2, when the
allowable time is too short (tT ≤ λ

ln(p) ), the heuristic only
uses one feature (the least possible number of features to use)
to make the decision. Proposition 3 shows the monotonicity of
the heuristic with respect to allowable time tT ; as the allowable
time increases, the heuristic uses monotonically more features
to make a classification decision.

B. Discounted Log-odds Ratio (LogOdds)

This heuristic regards the log-odds ratio,

ci = log
p(Y = y1 | x1, ..., xi)

p(Y = y2 | x1, ..., xi)

on the basis of features in set x1, x2, , ..., xi represents the
“confidence” of making the classification task. The greater
is the value of |ci|, the more confident is the classification
decision. While one feature comes into consideration, an
additional time-pressure dependent discount factor is imposed
on the absolute value the log-odds ratio ci of the features in
set {x1, x2, , ..., xi}. The heuristic selects the features under
pressure according to the maximization of the product of
the discount factors and the log-odds ratio. In this way,
less informative features are dropped because of the discount

factor. As the time pressure increases, the heuristic has a
greater tendency to drop the features.

Proposition 4. A sufficient condition for LogOdds to use
one feature is if the allowable time tT to make a decision
satisfies

tT ≤ λ

ln(1 + p−1
| 1+β | )

(4)

where β = v0/vI(x1).
Proposition 5.
Monotonicity with respect to allowable time tT : for an

object with features {xi}pi=1, HLogOdds(tT , {xi}pi=1) satisfies:

HLogOdds(tT,2, {xi}pi=1) ≥ HLogOdds(tT,1, {xi}pi=1) (5)

for ∀tT,1, tT,2, tT,2 > tT,1.
Note that unlike HProbGain, although HLogOdds tends to use

more features as time pressure is released, HLogOdds does not
necessarily use all p features when the time available tT is
greater than a certain threshold, because the value metric used
in HLogOdds: |ci| = |v0 +

∑i
j=1 vI(xj)| is not monotonically

increasing as the number of features to use i increases.

C. Information Free Feature Number Discounting (InfoFree)

After sorting the features in terms of the information value,
the cut-off criterion of this heuristic is no longer dependent on
the information value. Thus the allowable decision time tT is
the only argument for the heuristic. As exp(− λ

tT
) < 1, tT > 0,

the number of features to use is always less than or equal to
M and decreases exponentially when time pressure increases,
and the parameter λ > 0 controls how much a time pressure
is discounted. Given the monotonicity of the exponential
function, HInfoFree uses more features as time pressure is
released and it uses all p features if the time available tT
is sufficiently large, and uses one feature if the time available
tT is sufficiently small.

TABLE I
PERFORMANCE COMPARISON OF HEURISTIC STRATEGIES IN TARGET

LAYOUT 2

Performance
Metrics

Heuristic Strategies
AdaptiveSwitch ForwardExplore

Number of classified targets, Nv 8/8 8/8
Travel distance, D(τ) [m] 8.41 ± 0.46 13.45 ± 2.10
Correct target feature classifications 17.80 ± 1.10 15.20 ± 1.64
Info gathering efficiency, ηB [bit/m] 0.151 ± 0.008 0.091 ± 0.016

TABLE II
PERFORMANCE COMPARISON OF HEURISTIC STRATEGIES IN TARGET

LAYOUT 3

Performance
Metrics

Heuristic Strategies
AdaptiveSwitch ForwardExplore

Number of classified targets, Nv 2/2 2/2
Travel distance, D(τ) [m] 7.48 ± 0.465 11.67 ± 1.37
Correct target feature classifications 5.00 ± 1.00 4.80 ± 1.64
Info gathering efficiency, ηB [bit/m] 0.033 ± 0.003 0.021 ± 0.002
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(a) (b)
Fig. S1. Human participant solving treasure hunt problem under no 
pressures (a), and under sensory deprivation (fog) (b) in the Duke 
immersive Virtual Environment [1].
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Fig. S2. Features and human display used for the passive satisficing 
experiment, where the result of “win” or “lose” was displayed only during 
the training phase.
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TABLE S1
PERFORMANCE COMPARISON OF HEURISTIC STRATEGIES IN TARGET 

LAYOUT 2

Performance
Metrics

Heuristic Strategies
AdaptiveSwitch ForwardExplore

Number of classified targets, Nv 8/8 8/8
Travel distance, D(τ) [m] 8.41 ± 0.46 13.45 ± 2.10
Correct target feature classifications 17.80 ± 1.10 15.20 ± 1.64
Info gathering efficiency, ηB [bit/m] 0.151 ± 0.008 0.091 ± 0.016

TABLE S2
PERFORMANCE COMPARISON OF HEURISTIC STRATEGIES IN TARGET 

LAYOUT 3

Performance
Metrics

Heuristic Strategies
AdaptiveSwitch ForwardExplore

Number of classified targets, Nv 2/2 2/2
Travel distance, D(τ) [m] 7.48 ± 0.465 11.67 ± 1.37
Correct target feature classifications 5.00 ± 1.00 4.80 ± 1.64
Info gathering efficiency, ηB [bit/m] 0.033 ± 0.003 0.021 ± 0.002
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Fig. S3. DBN inter-slice structure hypothesis testing results
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Fig. S4. Performance comparison of two optimal strategies and human strategy over six case studies (a)-(f).
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Fig. S5. (a) Number of classified targets and (b) travel distance of 
Adap-tiveSwitch optimal strategies and the human strategy, with average 
errors and standard deviations shown by superimposed vertical bars.

(a) (b)
Fig. S6. New designs of workspace for heuristic strategy tests.
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