
Supplementary Material

For “A practical guide for combining functional regions of interest and white matter

bundles” (by Meisler, Kubota, et al.)

S1. Singularity/Apptainer to Docker Code Conversion Example

Here, we demonstrate converting an example BIDS application container command between

Singularity/Apptainer and Docker syntaxes. These two commands will run synonymous processes.

First, Singularity/Apptainer
singularity run --containall -e \
 -B ${bids}:/bids \ # Bind BIDS directory to container, mounting as /bids
 -B ${workdir}:/work \ # Bind work directory to container, mounting as /work
 -B ${fs_license}:/license.txt \ Bind license to container, mounting as /license.txt
 /path/to/fmriprep_23.2.0a2.img \ # Container built with `singularity build` command
 /bids /bids/derivatives participants \ # Begin fMRIPrep arguments here
 -w /work --fs-license-file /license.txt \
 ${other_arguments_can_go_here}

Now, Docker
docker run -ti --rm \
 -v ${bids}:/bids \ # Bind BIDS directory to container, mounting as /bids
 -v ${workdir}:/work \ # Bind work directory to container, mounting as /work
 -v ${fs_license}:/license.txt \ Bind license to container, mounting as /license.txt
 nipreps/fmriprep:23.2.0a2 # Name as found in corresponding DockerHub web page
 /bids /bids/derivatives participants \ # Begin fMRIPrep arguments here
 -w /work --fs-license-file /license.txt \
 ${other_arguments_can_go_here}

S2. Register FreeSurfer and QSIPrep Outputs

OSF path to file: nsd_bids/code/qsiprep/fs_qsiprep_registration.sh

#!/bin/bash -l
Define important paths
bids="/path/to/nsd_bids/" # Or replace with your own BIDS dataset
workdir="/path/to/scratch/space/" # e.g., /tmp
qsiprep_IMG="/path/to/qsiprep_container.img" # Software container
subject="sub-01" # Or replace with your own subject ID
mkdir -p "${workdir}/${subject}"
export SUBJECTS_DIR="${bids}/derivatives/freesurfer/" # Where FS outputs are

We can use the software in the QSIPrep container to run the commands below
run_qsiprep_cmd="singularity exec --containall -e -B ${bids},${workdir} ${qsiprep_IMG}" # Alias
for easy invocation of QSIPrep container

Convert from FreeSurfer .mgz file format to NIFTI

${run_qsiprep_cmd} mrconvert -strides -1,-2,3 \
 ${SUBJECTS_DIR}/${subject}/mri/brain.mgz ${workdir}/${subject}/fs_brain.nii

Register FreeSurfer brain to QSIPrep T1w
${run_qsiprep_cmd} antsRegistration --collapse-output-transforms 1 \
 --dimensionality 3 --float 0 \
 --initial-moving-transform [${bids}/derivatives/qsiprep/${subject}/anat/${subject}_desc-
preproc_T1w.nii, ${workdir}/${subject}/fs_brain.nii, 1] \
 --initialize-transforms-per-stage 0 --interpolation BSpline \
 --output [${workdir}/${subject}/transform, ${workdir}/${subject}/transform_Warped.nii.gz]
\
 --transform Rigid[0.1] \
 --metric Mattes[${bids}/derivatives/qsiprep/${subject}/anat/${subject}_desc-
preproc_T1w.nii, ${workdir}/${subject}/fs_brain.nii, 1, 32, Random, 0.25] \
 --convergence [1000x500x250x100, 1e-06, 10] \
 --smoothing-sigmas 3.0x2.0x1.0x0.0mm --shrink-factors 8x4x2x1 \
 --use-histogram-matching 0 \
 --masks [${bids}/derivatives/qsiprep/${subject}/anat/${subject}_desc-brain_mask.nii.gz,
NULL] \
 --winsorize-image-intensities [0.002, 0.998] \
 --write-composite-transform 0

Convert ANTs .mat transform to .txt, and rename it
${run_qsiprep_cmd} ConvertTransformFile 3 \
 ${workdir}/${subject}/transform0GenericAffine.mat \
 ${workdir}/${subject}/${subject}_from-FS_to-T1wACPC_mode-image_xfm.txt

Convert ANTs transform to MRTrix compatible transform
${run_qsiprep_cmd} transformconvert \
 ${workdir}/${subject}/${subject}_from-FS_to-T1wACPC_mode-image_xfm.txt \
 itk_import \
${bids}/derivatives/qsirecon/${subject}/anat/${subject}_from-FS_to-T1wACPC_mode-image_xfm.txt

S3. Surface-Based Analysis First-Level GLM

OSF path to file: nsd_bids/code/l1_gifti/l1_gifti.ipynb

import os.path as op
from os import makedirs
import numpy as np
from scipy import stats
import nibabel as nib
from nilearn.surface import load_surf_data
from nilearn.glm.first_level import (
 make_first_level_design_matrix,
 first_level_from_bids,
)
from nilearn.glm.first_level.first_level import run_glm
from nilearn.glm.contrasts import compute_contrast

Helper function for saving GIFTI statmaps
def save_statmap_to_gifti(data, outname):
 """Save a statmap to a gifti file.
 data: nilearn contrast model output, e.g., contrast.effect_size()

 outname: output file name
 """
 gii_to_save = nib.gifti.gifti.GiftiImage()
 gii_to_save.add_gifti_data_array(
 nib.gifti.gifti.GiftiDataArray(data=data, datatype="NIFTI_TYPE_FLOAT32")
)
 nib.save(gii_to_save, outname)

Define parameters here
bids = "/path/to/nsd_bids/" # Path to BIDS root
fmriprep_dir = op.join(
 "derivatives", "fmriprep"
) # BIDS-relative path to fMRIPrep
subject = "sub-01" # Subject name
task = "floc" # Task name
space = "fsnative" # BOLD projected on subject's freesurfer surface
hemis = ["L", "R"] # L for left, R for right
use_smoothed = False
run_nums = ["1", "2", "3", "4", "5", "6"] # Runs to process
slice_time_ref = (
 0 # From the fMRIPrep command, align slice time correction to start of TR
)

Define output directory
outdir = op.join(bids, "derivatives", "l1_gifti", subject)
if not op.exists(outdir):
 makedirs(outdir)

Loop across hemispheres
for hemi in hemis:
 print("Processing hemi", hemi)

 ### Final output dictionary for GLM contrast results (to be combined across runslater)
 contrast_objs = {}

 ### Loop over runs
 for run_num in run_nums:
 print("Processing run", run_num)

 ### Load GIFTI data and z-score it
 run = (
 "_run-" + run_num
) # Run string in filename (define as empty string "" if no run label)
 func_name = (
 f"{subject}_task-{task}{run}_hemi-{hemi}_space-{space}_bold.func.gii"
)
 # If you smoothed data beforehand, make sure to point this to your smoothed file name!
 if use_smoothed:
 func_name = func_name.replace("_bold", "_desc-smoothed_bold")
 gii_path = op.join(bids, fmriprep_dir, subject, "func", func_name)
 gii_data = load_surf_data(gii_path)
 gii_data_std = stats.zscore(gii_data, axis=1)

 ### Get shape of data

 n_vertices = np.shape(gii_data)[0]
 n_scans = np.shape(gii_data)[1]

 ### Use the volumetric data just to get the events and confounds file
 img_filters = [("desc", "preproc")]
 # If multiple runs are present, then add the run number to filter to specify
 if len(run) > 0:
 img_filters.append(("run", run_num))
 l1 = first_level_from_bids(
 bids,
 task,
 space_label="T1w",
 sub_labels=[subject[4:]],
 slice_time_ref=slice_time_ref,
 hrf_model="spm",
 drift_model=None, # Do not high_pass since we use fMRIPrep's cosine regressors
 drift_order=0, # Do not high_pass since we use fMRIPrep's cosine regressors
 high_pass=None, # Do not high_pass since we use fMRIPrep's cosine regressors
 img_filters=img_filters,
 derivatives_folder=fmriprep_dir,
)

 ### Extract information from the prepared model
 t_r = l1[0][0].t_r
 events = l1[2][0][0] # Dataframe of events information
 confounds = l1[3][0][0] # Dataframe of confounds

 ### From the confounds file, extract only those of interest
 # Start with the motion and acompcor regressors
 motion_keys = [
 "framewise_displacement",
 "rot_x",
 "rot_y",
 "rot_z",
 "trans_x",
 "trans_y",
 "trans_z",
]
 # Get ACompCor components (all to explain 50% variance)
 a_compcor_keys = [key for key in confounds.keys() if "a_comp_cor" in key]

 # Now add non-steady-state volumes
 non_steady_state_keys = [key for key in confounds.keys() if "non_steady" in key]

 # Add cosine regressors which act to high-pass filter data at 1/128 Hz
 cosine_keys = [key for key in confounds.keys() if "cosine" in key]

 # Pull out the confounds we want to keep
 confound_keys_keep = (
 motion_keys + a_compcor_keys + cosine_keys + non_steady_state_keys
)
 confounds_keep = confounds[confound_keys_keep]

 # Set first value of FD column to the column mean

 confounds_keep["framewise_displacement"][0] = np.nanmean(
 confounds_keep["framewise_displacement"]
)

 ### Create the design matrix
 # Start by getting times of scans
 frame_times = t_r * (np.arange(n_scans) + slice_time_ref)
 # Now use Nilearn to create the design matrix from the events files
 design_matrix = make_first_level_design_matrix(
 frame_times,
 events=events,
 hrf_model="spm", # convolve with SPM's canonical HRF function
 drift_model=None, # we use fMRIPrep's cosine regressors
 add_regs=confounds_keep,
)

 # z-score the design matrix to standardize it
 design_matrix_std = stats.zscore(design_matrix, axis=0)
 # add constant in to standardized design matrix since you cannot z-score a constant
 design_matrix_std["constant"] = np.ones(len(design_matrix_std)).astype(int)

 ### Run the GLM
 Y = np.transpose(gii_data_std)
 X = np.asarray(design_matrix)
 labels, estimates = run_glm(Y, X, n_jobs=-1)

 ### Define the contrasts
 contrast_matrix = np.eye(design_matrix.shape[1])
 basic_contrasts = dict(
 [
 (column, contrast_matrix[i])
 for i, column in enumerate(design_matrix.columns)
]
)
 contrasts = {
 "facesGTother": (
 basic_contrasts["adult"] / 2
 + basic_contrasts["child"] / 2
 - basic_contrasts["body"] / 8
 - basic_contrasts["limb"] / 8
 - basic_contrasts["number"] / 8
 - basic_contrasts["word"] / 8
 - basic_contrasts["car"] / 8
 - basic_contrasts["instrument"] / 8
 - basic_contrasts["corridor"] / 8
 - basic_contrasts["house"] / 8
),
 "charactersGTother": (
 basic_contrasts["number"] / 2
 + basic_contrasts["word"] / 2
 - basic_contrasts["body"] / 8
 - basic_contrasts["limb"] / 8
 - basic_contrasts["adult"] / 8
 - basic_contrasts["child"] / 8

 - basic_contrasts["car"] / 8
 - basic_contrasts["instrument"] / 8
 - basic_contrasts["corridor"] / 8
 - basic_contrasts["house"] / 8
),
 "placesGTother": (
 basic_contrasts["corridor"] / 2
 + basic_contrasts["house"] / 2
 - basic_contrasts["body"] / 8
 - basic_contrasts["limb"] / 8
 - basic_contrasts["adult"] / 8
 - basic_contrasts["child"] / 8
 - basic_contrasts["car"] / 8
 - basic_contrasts["instrument"] / 8
 - basic_contrasts["number"] / 8
 - basic_contrasts["word"] / 8
),
 "bodiesGTother": (
 basic_contrasts["body"] / 2
 + basic_contrasts["limb"] / 2
 - basic_contrasts["corridor"] / 8
 - basic_contrasts["house"] / 8
 - basic_contrasts["adult"] / 8
 - basic_contrasts["child"] / 8
 - basic_contrasts["car"] / 8
 - basic_contrasts["instrument"] / 8
 - basic_contrasts["number"] / 8
 - basic_contrasts["word"] / 8
),
 "objectsGTother": (
 basic_contrasts["car"] / 2
 + basic_contrasts["instrument"] / 2
 - basic_contrasts["corridor"] / 8
 - basic_contrasts["house"] / 8
 - basic_contrasts["adult"] / 8
 - basic_contrasts["child"] / 8
 - basic_contrasts["body"] / 8
 - basic_contrasts["limb"] / 8
 - basic_contrasts["number"] / 8
 - basic_contrasts["word"] / 8
),
 }

 ### Compute the contrasts
 for index, (contrast_id, contrast_val) in enumerate(contrasts.items()):
 # Add a label to the output dictionary if not present
 if contrast_id not in contrast_objs:
 contrast_objs[contrast_id] = []

 # Define a name template for output statistical maps (stat-X is replaced later on)
 outname_base = f"{subject}{run}_hemi-{hemi}_space-{space}_contrast-
{contrast_id}_stat-X_statmap.func.gii"
 if use_smoothed:
 outname_base = outname_base.replace(

 "_statmap", "_desc-smoothed_statmap"
)
 outname_base = op.join(outdir, outname_base) # Place in output directory

 # compute contrast-related statistics
 contrast = compute_contrast(
 labels, estimates, contrast_val, contrast_type="t"
)
 # add contrast to the output dictionary
 contrast_objs[contrast_id].append(contrast)

 # do the run-specific processing
 betas = contrast.effect_size()
 z_score = contrast.z_score()
 t_value = contrast.stat()
 p_value = contrast.p_value()
 variance = contrast.effect_variance()

 # Save the value maps as GIFTIs
 # Effect size
 outname = outname_base.replace("stat-X", "stat-effect")
 save_statmap_to_gifti(betas, outname)

 # z-score
 outname = outname_base.replace("stat-X", "stat-z")
 save_statmap_to_gifti(z_score, outname)

 # t-value
 outname = outname_base.replace("stat-X", "stat-t")
 save_statmap_to_gifti(t_value, outname)

 # p-value
 outname = outname_base.replace("stat-X", "stat-p")
 save_statmap_to_gifti(p_value, outname)

 # variance
 outname = outname_base.replace("stat-X", "stat-variance")
 save_statmap_to_gifti(variance, outname)

 ### Now produce the session-wide statistical maps, averaging across all runs
 if len(run_nums) > 1: # Only do if multiple runs are present
 print("Producing Session-Wide Statistical Maps")
 # Loop across contrast IDs
 for index, (contrast_id, contrast_val) in enumerate(contrasts.items()):
 # Add run-wide contrast objects together
 contrast_concat = contrast_objs[contrast_id][0]
 for i in range(1, len(contrast_objs[contrast_id])):
 contrast_concat = contrast_concat.__add__(contrast_objs[contrast_id][i])

 # Calculate the statistical maps
 betas = contrast_concat.effect_size()
 z_score = contrast_concat.z_score()
 t_value = contrast_concat.stat()
 p_value = contrast_concat.p_value()

 variance = contrast_concat.effect_variance()

 # Define output name template
 outname_base = f"{subject}_hemi-{hemi}_space-{space}_contrast-{contrast_id}_stat-
X_statmap.func.gii"
 if use_smoothed:
 outname_base = outname_base.replace("_statmap", "_desc-smoothed_statmap")
 outname_base = op.join(outdir, outname_base)

 # Save the value maps as GIFTIs
 # Effect size
 outname = outname_base.replace("stat-X", "stat-effect")
 save_statmap_to_gifti(betas, outname)

 # z-score
 outname = outname_base.replace("stat-X", "stat-z")
 save_statmap_to_gifti(z_score, outname)

 # t-value
 outname = outname_base.replace("stat-X", "stat-t")
 save_statmap_to_gifti(t_value, outname)

 # p-value
 outname = outname_base.replace("stat-X", "stat-p")
 save_statmap_to_gifti(p_value, outname)

 # variance
 outname = outname_base.replace("stat-X", "stat-variance")
 save_statmap_to_gifti(variance, outname)

S4. Volumetric Analysis

One can use Fitlins (https://github.com/poldracklab/fitlins) (Markiewicz et al., 2022) to run GLMs

on the fMRIPrep-preprocessed volumetric data based on a model specification file and

(https://bids-standard.github.io/stats-models/#) the BIDS events descriptor files in a subject’s func

folder. A model for the functional localizer task is shared below (as well as in the OSF repository).

The model shared here will, within a given subject, calculate each categorically-selective

functional contrast. Non-steady state volumes are censored, and confounds include framewise

displacement, 6 head motion parameters, and anatomical CompCor component that explain 50%

of signal variance in a combined white matter / cerebrospinal fluid mask(Behzadi et al., 2007)

Cosine-basis functions are regressed, acting as a high-pass filter (1/128 seconds). Session-averaged

statistical maps across all runs are also produced.

OSF path to file: nsd_bids/models/model-floc_desc-6MP50ACompCor_smdl.json

{
 "Name": "floc-model-6MP50ACompCor",
 "BIDSModelVersion": "1.0.0",
 "Description": "NSD contrasts; 6 Head Motion Parameters; FD; Non Steady-State;
50% Variance ACompCor Components",
 "Input": {
 "task": [

https://github.com/poldracklab/fitlins
https://bids-standard.github.io/stats-models/

 "floc"
]
 },
 "Nodes": [
 {
 "Level": "run",
 "Name": "runFloc6MP50ACompCor",
 "GroupBy": [
 "subject",
 "session",
 "run"
],
 "Transformations": {
 "Transformer": "pybids-transforms-v1",
 "Instructions": [
 {
 "Name": "Factor",
 "Input": [
 "trial_type"
]
 },
 {
 "Name": "Convolve",
 "Input": [
 "trial_type.body",
 "trial_type.limb",
 "trial_type.number",
 "trial_type.word",
 "trial_type.adult",
 "trial_type.child",
 "trial_type.car",
 "trial_type.instrument",
 "trial_type.corridor",
 "trial_type.house"
],
 "Model": "spm"
 }
]
 },
 "Model": {
 "X": [
 "trial_type.body",
 "trial_type.limb",
 "trial_type.number",
 "trial_type.word",
 "trial_type.adult",
 "trial_type.child",
 "trial_type.car",
 "trial_type.instrument",
 "trial_type.corridor",
 "trial_type.house",
 "non_steady_state*",
 "framewise_displacement",
 "trans_x",

 "trans_y",
 "trans_z",
 "rot_x",
 "rot_y",
 "rot_z",
 "a_comp_cor*",
 "cosine*",
 1
],
 "Type": "glm"
 },
 "Contrasts": [
 {
 "Name": "bodies_gt_other",
 "ConditionList": [
 "trial_type.body",
 "trial_type.limb",
 "trial_type.number",
 "trial_type.word",
 "trial_type.adult",
 "trial_type.child",
 "trial_type.car",
 "trial_type.instrument",
 "trial_type.corridor",
 "trial_type.house"
],
 "Weights": [
 0.5,
 0.5,
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 -0.125
],
 "Test": "t"
 },
 {
 "Name": "characters_gt_other",
 "ConditionList": [
 "trial_type.body",
 "trial_type.limb",
 "trial_type.number",
 "trial_type.word",
 "trial_type.adult",
 "trial_type.child",
 "trial_type.car",
 "trial_type.instrument",
 "trial_type.corridor",
 "trial_type.house"
],

 "Weights": [
 -0.125,
 -0.125,
 0.5,
 0.5,
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 -0.125
],
 "Test": "t"
 },
 {
 "Name": "faces_gt_other",
 "ConditionList": [
 "trial_type.body",
 "trial_type.limb",
 "trial_type.number",
 "trial_type.word",
 "trial_type.adult",
 "trial_type.child",
 "trial_type.car",
 "trial_type.instrument",
 "trial_type.corridor",
 "trial_type.house"
],
 "Weights": [
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 0.5,
 0.5,
 -0.125,
 -0.125,
 -0.125,
 -0.125
],
 "Test": "t"
 },
 {
 "Name": "objects_gt_other",
 "ConditionList": [
 "trial_type.body",
 "trial_type.limb",
 "trial_type.number",
 "trial_type.word",
 "trial_type.adult",
 "trial_type.child",
 "trial_type.car",
 "trial_type.instrument",
 "trial_type.corridor",

 "trial_type.house"
],
 "Weights": [
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 0.5,
 0.5,
 -0.125,
 -0.125
],
 "Test": "t"
 },
 {
 "Name": "places_gt_other",
 "ConditionList": [
 "trial_type.body",
 "trial_type.limb",
 "trial_type.number",
 "trial_type.word",
 "trial_type.adult",
 "trial_type.child",
 "trial_type.car",
 "trial_type.instrument",
 "trial_type.corridor",
 "trial_type.house"
],
 "Weights": [
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 -0.125,
 0.5,
 0.5
],
 "Test": "t"
 }
]
 },
 {
 "Level": "session",
 "Name": "sessionFloc6MP50ACompCor",
 "GroupBy": [
 "session",
 "subject",
 "contrast"
],

 "Model": {
 "X": [
 1
],
 "Type": "meta"
 },
 "DummyContrasts": {
 "Test": "t"
 }
 }
],
 "Edges": [
 {
 "Source": "runFloc6MP50ACompCor",
 "Destination": "sessionFloc6MP50ACompCor"
 }
]
}

We can run the model with the following code (based on Fitlins version 0.11.0):

#!/bin/bash -l
Define important paths and parameters
bids="/path/to/nsd_bids/" # Or replace with your own BIDS dataset
workdir="/path/to/scratch/space/" # e.g., /tmp
fitlins_IMG="/path/to/fitlins_container.img" # Software container
subject="sub-01" # Or replace with your own subject ID
task="floc" # Task name of BOLD files
desc="6MP50ACompCor" # Model description
model_file={bids}/models/model-${task}_desc-${desc}_smdl.json
smoothing="4" # Smoothing kernel mm FWHM, can also set it at 0 for no smoothing
space="T1w" # Analyze the native space volumetric outputs
Note: you can also process MNI or surface CIFTI files if available

Run the FitLins command
singularity run --containall -e -B ${bids},${workdir} \ # Can also use Docker
 ${fitlins_IMG} ${bids} ${bids}/derivatives/fitlins participant \
 --participant-label ${subject} \ # Remove argument to process everyone
 -w ${workdir} \ # Working directory
 -m ${model_file} \ # Path to model specification
 -d ${bids}/derivatives/fmriprep/ # fMRIPrep outputs from earlier
 --space ${space} \ # Space of outputs
 -s ${smoothing} \ # Smoothing kernel

For an example of statistically thresholding an fROI, we can identify the voxels in the 90th

percentile of z-scores for the character-selective contrast within the left fusiform gyrus, defined by

the Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002). Note this code uses the

Nilearn (Abraham et al., 2014) and ANTsPy (Avants, Tustison & Song, 2009; Tustison et al., 2021)

software packages.

import os.path as op
from os import makedirs
import numpy as np
from nilearn.image import load_img, new_img_like
from nilearn.datasets import fetch_atlas_aal

from ants import apply_transforms, image_read, image_write

Define parameters here
bids="/path/to/nsd_bids/" # Path to BIDS root
fmriprep_dir = op.join("derivatives","fmriprep") # BIDS-relative path to fMRIPrep
fitlins_dir = op.join("derivatives","fitlins") # BIDS-relative path to Fitlins
subject = "sub-01" # Subject name
node_name = "sessionFloc6MP50ACompCor" # Node name defined by Fitlins model
contrast_name = "charactersGtOther" # Contrast name defined by Fitlins model
percentile = 90 # Find top 10% of voxels in left IFG
out_dir = op.join(bids, 'derivatives', 'threshold_fROIs', subject)
if not op.exists(out_dir):
 makedirs(out_dir)
hemi = "L"
region = "Fusiform"
aal_regionname = f"Fusiform_{hemi}" # Region to extract
out_path = op.join(out_dir, f"{subject}_hemi-{hemi}_space-T1w_contrast-{contrast_name}_stat-
z_desc-{region}_desc-thresholded_roi.nii.gz") # Where to save the output image

Load Z-stat image
z_img_path = op.join(bids,fitlins_dir,f"node-{node_name}",subject,
 f"{subject}_contrast-{contrast_name}_stat-z_statmap.nii.gz")
z_img = load_img(z_img_path)
z_img_affine = z_img.affine # Affine matrix
z_img_values = z_img.get_fdata() # Array of data

Register the AAL atlas to native space using ANTs
Load the Z-stat img in a way that ANTs likes
z_img_ants = image_read(z_img_path)

Download the AAL atlas
AAL = fetch_atlas_aal()
AAL_MNI_path = AAL.maps
AAL_MNI = image_read(AAL_MNI_path)

Find the MNI-to-Native space transformation from fMRIPrep
MNI2Native_reg = op.join(bids,fmriprep_dir,subject,"anat",f"{subject}_from-
MNI152NLin2009cAsym_to-T1w_mode-image_xfm.h5")

Run the registration and save out the image
AAL_native_path = op.join(bids,fmriprep_dir,subject,"anat",f"{subject}_desc-AAL_dseg.nii.gz")
Where to save registered atlas
AAL_native = apply_transforms(z_img_ants, AAL_MNI, transformlist=[MNI2Native_reg],
interpolator="nearestNeighbor")
image_write(AAL_native, AAL_native_path)

Get binary mask of the region
Get index of AAL labels that contains "Fusiform_L"
region_index = AAL.labels.index(aal_regionname)
region_value = np.asarray(AAL.indices)[region_index].astype(int)
segmentation = load_img(AAL_native_path) # Load out native space segmentation
segmentation_values = segmentation.get_fdata()
Make binary mask of all region values
region_mask_vals = np.full(np.shape(segmentation_values), False)

region_mask_vals[segmentation_values==region_value] = True
region_mask = new_img_like(z_img, region_mask_vals, affine=z_img_affine, copy_header=True)

Find top 10% of values in region
z_img_values_masked = z_img_values[region_mask_vals]
percentile_thresh = np.percentile(z_img_values_masked, percentile) # The critical threshold
z_inds_gt_thresh_in_mask = (z_img_values>=percentile_thresh) * region_mask_vals
z_img_masked_thresholded = new_img_like(z_img, z_inds_gt_thresh_in_mask, affine=z_img_affine,
copy_header=True)
z_img_masked_thresholded.to_filename(out_path) # Save the image out

S5. Guide for Drawing fROIs

Here we provide a guide for hand drawing ROIs using Freeview. This functionality is only

available in Freeview version >= 3 (corresponds to FreeSurfer version >= 7.0). The example fROI

is mOTS-words which is named for its function (word-selective) and its anatomy (located in the

mid-occipitotemporal sulcus region). We load the z-statistic map for the contrast of characters

compared to other stimuli (Figure S1, A), threshold the map with a z-statistic > 3 (Figure S1, B),

draw a path around the selected vertices that are above threshold and match our anatomical

landmark of interest (Figure S1, A), close the path (Figure S1, D and E), and fill the ROI (Figure

S1, F).

Figure S1. Tutorial for hand drawing ROIs. (A) The first step is loading the statistical map. This

map is the z-statistic contrast between response to characters compared to all other categories.

(B) Next you can threshold the map, here we threshold with (z > 3). (C) Use the Path/Custom Fill

tool to draw dots around your desired region of interest. Here we are defining mOTS-words so we

choose vertices that are in the mid-occipital temporal sulcus region. (D) Use the Make Closed

Path tool to close the path. (E) Put a dot in the center of your closed path. (F) Use the fill option

to fill your closed path.

S6. Detailed Pipeline Descriptions

The below boilerplate texts were automatically generated by fMRIPrep and QSIPrep with the

express intention that users should copy and paste this text into their manuscripts unchanged.

They are released under the CC0 license.

S6.1 Diffusion-Weighted Image Processing Pipeline

Preprocessing was performed using QSIPrep 0.19.1, which is based on Nipype 1.8.6

(Gorgolewski et al. (2011); Gorgolewski et al. (2018); RRID:SCR_002502).

S6.1.1 Anatomical data preprocessing

A total of 6 T1-weighted (T1w) images were found within the input BIDS dataset. All of them

were corrected for intensity non-uniformity (INU) using N4BiasFieldCorrection (Tustison et

al. 2010, ANTs 2.4.3). A T1w-reference map was computed after registration of 6 T1w images

(after INU-correction) using antsRegistration [ANTs 2.4.3]. The anatomical reference image

was reoriented into AC-PC alignment via a 6-DOF transform extracted from a full affine

registration to the MNI152NLin2009cAsym template. A full nonlinear registration to the template

from AC-PC space was estimated via symmetric nonlinear registration (SyN) using

antsRegistration. Brain extraction was performed on the T1w image using SynthStrip

(Hoopes et al. 2022) and automated segmentation was performed using SynthSeg (Billot, Greve,

et al. 2023; Billot et al., 2023) from FreeSurfer version 7.3.1.

S6.1.2 Diffusion data preprocessing

Images were grouped into two phase encoding polarity groups. A total of 2 DWI series in the j+

phase-encoding direction distortion group were concatenated, with preprocessing operations

performed on individual DWI series before concatenation. A total of 2 DWI series in the j- phase-

encoding direction distortion group were concatenated, with preprocessing operations performed

on individual DWI series before concatenation. Any images with a b-value less than 100 s/mm^2

were treated as a b=0 image. Denoising using patch2self (Fadnavis et al., 2020) was applied

with settings based on developer recommendations. After patch2self, Gibbs unringing was

performed using MRtrix3’s mrdegibbs (Kellner et al. 2016). Following unringing, the mean

intensity of the DWI series was adjusted so all the mean intensity of the b=0 images matched

across each separate DWI scanning sequence. B1 field inhomogeneity was corrected using

dwibiascorrect from MRtrix3 with the N4 algorithm (Tustison et al. 2010) after corrected

images were resampled. Both distortion groups were then merged into a single file, as required for

the FSL workflows.

FSL (version 6.0.5.1:57b01774)’s eddy was used for head motion correction and Eddy current

correction (Andersson and Sotiropoulos 2016). Eddy was configured with a q-space smoothing

factor of 10, a total of 5 iterations, and 1000 voxels used to estimate hyperparameters. A linear first

level model and a linear second level model were used to characterize Eddy current-related spatial

distortion. q-space coordinates were forcefully assigned to shells. Field offset was attempted to be

separated from subject movement. Shells were aligned post-eddy. Eddy’s outlier replacement was

run (Andersson et al. 2016). Data were grouped by slice, only including values from slices

determined to contain at least 250 intracerebral voxels. Groups deviating by more than 4 standard

deviations from the prediction had their data replaced with imputed values.

Data was collected with reversed phase-encode blips, resulting in pairs of images with distortions

going in opposite directions. Here, multiple DWI series were acquired with opposite phase

encoding directions. A b=0 image and the Fractional Anisotropy images from both phase encoding

directions were used together in a multi-modal registration to estimate the susceptibility-induced

off-resonance field. A T2-weighted image was included in the multimodal registration. An updated

version of DRBUDDI (Irfanoglu et al., 2015), part of the TORTOISE (Irfanoglu et al., 2017)

software package was used to estimate distortion. Signal intensity was adjusted in the final

interpolated images using a method similar to LSR. Several confounding time-series were

calculated based on the preprocessed DWI: framewise displacement (FD) using the

implementation in Nipype (following the definitions by Power et al. 2014). The head-motion

estimates calculated in the correction step were also placed within the corresponding confounds

file. Slicewise cross correlation was also calculated. The DWI time-series were resampled to

ACPC, generating a preprocessed DWI run in ACPC space with 1.25mm isotropic voxels.

Many internal operations of QSIPrep use Nilearn 0.10.2 (Abraham et al. 2014,

RRID:SCR_001362) and DIPY (Garyfallidis et al. 2014). For more details of the pipeline, see the

section corresponding to workflows in QSIPrep’s documentation.

S6.1.3 Diffusion data postprocessing

Reconstruction was performed using QSIprep 0.19.1, which is based on Nipype 1.8.6

(Gorgolewski et al. (2011); Gorgolewski et al. (2018); RRID:SCR_002502).

QSIPrep-preprocessed T1w images and brain masks were used. A hybrid surface/volume

segmentation was created [Smith 2020]. FreeSurfer outputs were registered to the QSIPrep

outputs. Multi-tissue fiber response functions were estimated using the dhollander algorithm

(Dhollander et al., 2019). FODs were estimated via constrained spherical deconvolution (CSD,

Tournier et al., 2007, 2008) using an unsupervised multi-tissue method (Dhollander et al., 2016,

2019). Reconstruction was done using MRtrix3 (Tournier et al., 2019). FODs were intensity-

normalized using mtnormalize (Dhollander et al., 2021). The FODs and surface/volume

segmentation were used for anatomically-constrained iFOD2 tractography (Smith et al., 2012,

2020). 10 million streamlines with a length of 30-250 mm were created, with backtracking and

cropping at the gray matter white matter interface enabled. These streamlines were then fed into

PyAFQ to segment major white matter bundles (Kruper et al., 2021).

S6.2 Functional MRI Processing Pipeline

Results included in this manuscript come from preprocessing performed using fMRIPrep 23.2.0a2

(Esteban et al. (2019); Esteban et al. (2018); RRID:SCR_016216), which is based on Nipype 1.8.6

(K. Gorgolewski et al. (2011); K. J. Gorgolewski et al. (2018); RRID:SCR_002502).

S6.2.1 Preprocessing of B0 inhomogeneity mappings

 A total of 3 fieldmaps were found available within the input BIDS structure for this particular

subject. A B0 nonuniformity map (or fieldmap) was estimated from the phase-drift map(s) measure

with two consecutive GRE (gradient-recalled echo) acquisitions. The corresponding phase-map(s)

were phase-unwrapped with prelude (FSL).

S6.2.2 Anatomical data preprocessing

A total of 6 T1-weighted (T1w) images were found within the input BIDS dataset. Each T1w image

was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et

al. 2010), distributed with ANTs 2.5.0 (Avants et al. 2008, RRID:SCR_004757). The T1w-

reference was then skull-stripped with a Nipype implementation of the

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template.

Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM)

was performed on the brain-extracted T1w using fast (FSL (version unknown),

RRID:SCR_002823, Zhang, Brady, and Smith 2001). An anatomical T1w-reference map was

computed after registration of 6 T1w images (after INU-correction) using

mri_robust_template (FreeSurfer 7.3.2, Reuter, Rosas, and Fischl 2010). An anatomical T2w-

reference map was computed after registration of 3 T2w images (after INU-correction) using

mri_robust_template (FreeSurfer 7.3.2, Reuter, Rosas, and Fischl 2010). Brain surfaces were

reconstructed using recon-all (FreeSurfer 7.3.2, RRID:SCR_001847, Dale, Fischl, and Sereno

1999), and the brain mask estimated previously was refined with a custom variation of the method

to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of

Mindboggle (RRID:SCR_002438, Klein et al. 2017). A T2-weighted image was used to improve

pial surface refinement. Brain surfaces were reconstructed using recon-all (FreeSurfer 7.3.2,

RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and the brain mask estimated previously was

refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived

segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, Klein et al. 2017).

Volume-based spatial normalization to two standard spaces (MNI152NLin2009cAsym,

MNI152NLin6Asym) was performed through nonlinear registration with antsRegistration

(ANTs 2.5.0), using brain-extracted versions of both T1w reference and the T1w template. The

following templates were were selected for spatial normalization and accessed with TemplateFlow

(23.1.0, Ciric et al. 2022): ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et

al. (2009), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], FSL’s MNI ICBM

152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model [Evans

et al. (2012), RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym]. Grayordinate

“dscalar” files containing 91k samples were resampled onto fsLR using the Connectome

Workbench (Glasser et al. 2013).

S6.2.3 Functional data preprocessing

For each of the 6 BOLD runs found per subject (across all tasks and sessions), the following

preprocessing was performed. First, a reference volume was generated, using a custom

methodology of fMRIPrep, for use in head motion correction. Head-motion parameters with

respect to the BOLD reference (transformation matrices, and six corresponding rotation and

translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL,

Jenkinson et al. 2002). The estimated fieldmap was then aligned with rigid-registration to the target

EPI (echo-planar imaging) reference run. The field coefficients were mapped on to the reference

EPI using the transform. The BOLD reference was then co-registered to the T1w reference using

bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl

2009). Co-registration was configured with six degrees of freedom. Several confounding time-

series were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS

and three region-wise global signals. FD was computed using two formulations following Power

(absolute sum of relative motions, Power et al. (2014)) and Jenkinson (relative root mean square

displacement between affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each

functional run, both using their implementations in Nipype (following the definitions by Power et

al. 2014). The three global signals are extracted within the CSF, the WM, and the whole-brain

masks. Additionally, a set of physiological regressors were extracted to allow for component-based

noise correction (CompCor, Behzadi et al. 2007). Principal components are estimated after high-

pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off)

for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor

components are then calculated from the top 2% variable voxels within the brain mask. For

aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in

anatomical space. The implementation differs from that of Behzadi et al. in that instead of eroding

the masks by 2 pixels on BOLD space, a mask of pixels that likely contain a volume fraction of

GM is subtracted from the aCompCor masks. This mask is obtained by dilating a GM mask

extracted from the FreeSurfer’s aseg segmentation, and it ensures components are not extracted

from voxels containing a minimal fraction of GM. Finally, these masks are resampled into BOLD

space and binarized by thresholding at 0.99 (as in the original implementation). Components are

also calculated separately within the WM and CSF masks. For each CompCor decomposition, the

k components with the largest singular values are retained, such that the retained components’ time

series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM,

combined, or temporal). The remaining components are dropped from consideration. The head-

motion estimates calculated in the correction step were also placed within the corresponding

confounds file. The confound time series derived from head motion estimates and global signals

were expanded with the inclusion of temporal derivatives and quadratic terms for each

(Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardized

DVARS were annotated as motion outliers. Additional nuisance timeseries are calculated by means

of principal components analysis of the signal found within a thin band (crown) of voxels around

the edge of the brain, as proposed by (Patriat, Reynolds, and Birn 2017). The BOLD time-series

were resampled onto the following surfaces (FreeSurfer reconstruction nomenclature): fsnative.

The BOLD time-series were resampled onto the left/right-symmetric template “fsLR” using the

Connectome Workbench (Glasser et al. 2013). A “goodvoxels” mask was applied during volume-

to-surface sampling in fsLR space, excluding voxels whose time-series have a locally high

coefficient of variation. Grayordinates files (Glasser et al. 2013) containing 91k samples were also

generated with surface data transformed directly to fsLR space and subcortical data transformed

to 2 mm resolution MNI152NLin6Asym space. All resamplings can be performed with a single

interpolation step by composing all the pertinent transformations (i.e. head-motion transform

matrices, susceptibility distortion correction when available, and co-registrations to anatomical

and output spaces). Gridded (volumetric) resamplings were performed using nitransforms,

configured with cubic B-spline interpolation. Non-gridded (surface) resamplings were performed

using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.10.2 (Abraham et al. 2014,

RRID:SCR_001362), mostly within the functional processing workflow. For more details of the

pipeline, see the section corresponding to workflows in fMRIPrep’s documentation.

Supplemental References

Abraham, Alexandre, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais, Andreas Mueller,

Jean Kossaifi, Alexandre Gramfort, Bertrand Thirion, and Gael Varoquaux. 2014. “Machine

Learning for Neuroimaging with Scikit-Learn.” Frontiers in Neuroinformatics 8.

https://doi.org/10.3389/fninf.2014.00014.

Andersson, Jesper LR, and Stamatios N Sotiropoulos. 2016. “An Integrated Approach to

Correction for Off-Resonance Effects and Subject Movement in Diffusion Mr Imaging.”

Neuroimage 125. Elsevier: 1063–78.

Andersson, Jesper LR, Mark S Graham, Enikő Zsoldos, and Stamatios N Sotiropoulos. 2016.

“Incorporating Outlier Detection and Replacement into a Non-Parametric Framework for

Movement and Distortion Correction of Diffusion Mr Images.” Neuroimage 141. Elsevier: 556–

72.

Andersson, Jesper LR, Stefan Skare, and John Ashburner. 2003. “How to Correct Susceptibility

Distortions in Spin-Echo Echo-Planar Images: Application to Diffusion Tensor Imaging.”

Neuroimage 20 (2). Elsevier: 870–88.

Avants, B. B., C. L. Epstein, M. Grossman, and J. C. Gee. 2008. “Symmetric Diffeomorphic Image

Registration with Cross-Correlation: Evaluating Automated Labeling of Elderly and

Neurodegenerative Brain.” Medical Image Analysis 12 (1): 26–41.

https://doi.org/10.1016/j.media.2007.06.004.

Avants, B.B., Tustison, N. & Song, G. (2009) Advanced normalization tools (ANTS). Insight j. 2

(365), 1–35.

Behzadi, Yashar, Khaled Restom, Joy Liau, and Thomas T. Liu. 2007. “A Component Based Noise

Correction Method (CompCor) for BOLD and Perfusion Based fMRI.” NeuroImage 37 (1): 90–

101. https://doi.org/10.1016/j.neuroimage.2007.04.042.

Billot, Benjamin, Douglas N Greve, Oula Puonti, Axel Thielscher, Koen Van Leemput, Bruce

Fischl, Adrian V Dalca, Juan Eugenio Iglesias, and others. 2023. “SynthSeg: Segmentation of

Brain Mri Scans of Any Contrast and Resolution Without Retraining.” Medical Image Analysis 86.

Elsevier: 102789.

Billot, Benjamin, Colin Magdamo, You Cheng, Steven E Arnold, Sudeshna Das, and Juan Eugenio

Iglesias. 2023. “Robust Machine Learning Segmentation for Large-Scale Analysis of

Heterogeneous Clinical Brain Mri Datasets.” Proceedings of the National Academy of Sciences

120 (9). National Acad Sciences: e2216399120.

https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.neuroimage.2007.04.042

Ciric, R., William H. Thompson, R. Lorenz, M. Goncalves, E. MacNicol, C. J. Markiewicz, Y. O.

Halchenko, et al. 2022. “TemplateFlow: FAIR-Sharing of Multi-Scale, Multi-Species Brain

Models.” Nature Methods 19: 1568–71. https://doi.org/10.1038/s41592-022-01681-2.

Dale, Anders M., Bruce Fischl, and Martin I. Sereno. 1999. “Cortical Surface-Based Analysis: I.

Segmentation and Surface Reconstruction.” NeuroImage 9 (2): 179–94.

https://doi.org/10.1006/nimg.1998.0395.

Dhollander, Thijs, David Raffelt, and Alan Connelly. "Unsupervised 3-tissue response function

estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image."

In ISMRM workshop on breaking the barriers of diffusion MRI, vol. 5, no. 5. 2016.

Dhollander, Thijs, Rami Tabbara, Jonas Rosnarho-Tornstrand, Jacques-Donald Tournier, David

Raffelt, and Alan Connelly. "Multi-tissue log-domain intensity and inhomogeneity normalisation

for quantitative apparent fibre density." In Proc. ISMRM, vol. 29, p. 2472. 2021.

Dhollander, Thijs, Remika Mito, David Raffelt, and Alan Connelly. "Improved white matter

response function estimation for 3-tissue constrained spherical deconvolution." In Proc. Intl. Soc.

Mag. Reson. Med, vol. 555, no. 10. 2019.

Esteban, Oscar, Ross Blair, Christopher J. Markiewicz, Shoshana L. Berleant, Craig Moodie,

Feilong Ma, Ayse Ilkay Isik, et al. 2018. “fMRIPrep 23.2.1.” Software.

https://doi.org/10.5281/zenodo.852659.

Esteban, Oscar, Christopher Markiewicz, Ross W Blair, Craig Moodie, Ayse Ilkay Isik, Asier

Erramuzpe Aliaga, James Kent, et al. 2019. “fMRIPrep: A Robust Preprocessing Pipeline for

Functional MRI.” Nature Methods 16: 111–16. https://doi.org/10.1038/s41592-018-0235-4.

Evans, AC, AL Janke, DL Collins, and S Baillet. 2012. “Brain Templates and Atlases.”

NeuroImage 62 (2): 911–22. https://doi.org/10.1016/j.neuroimage.2012.01.024.

Fadnavis, Shreyas, Joshua Batson, and Eleftherios Garyfallidis. "Patch2Self: Denoising Diffusion

MRI with Self-Supervised Learning." Advances in Neural Information Processing Systems 33

(2020): 16293-16303.

Fonov, VS, AC Evans, RC McKinstry, CR Almli, and DL Collins. 2009. “Unbiased Nonlinear

Average Age-Appropriate Brain Templates from Birth to Adulthood.” NeuroImage 47, Supplement

1: S102. https://doi.org/10.1016/S1053-8119(09)70884-5.

Garyfallidis, Eleftherios, Matthew Brett, Bagrat Amirbekian, Ariel Rokem, Stefan Van Der Walt,

Maxime Descoteaux, and Ian Nimmo-Smith. 2014. “Dipy, a Library for the Analysis of Diffusion

Mri Data.” Frontiers in Neuroinformatics 8. Frontiers: 8.

Glasser, Matthew F., Stamatios N. Sotiropoulos, J. Anthony Wilson, Timothy S. Coalson, Bruce

Fischl, Jesper L. Andersson, Junqian Xu, et al. 2013. “The Minimal Preprocessing Pipelines for

the Human Connectome Project.” NeuroImage, Mapping the connectome, 80: 105–24.

https://doi.org/10.1016/j.neuroimage.2013.04.127.

https://doi.org/10.1038/s41592-022-01681-2
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.5281/zenodo.852659
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1016/j.neuroimage.2012.01.024
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1016/j.neuroimage.2013.04.127

Gorgolewski, K., C. D. Burns, C. Madison, D. Clark, Y. O. Halchenko, M. L. Waskom, and S.

Ghosh. 2011. “Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing

Framework in Python.” Frontiers in Neuroinformatics 5: 13.

https://doi.org/10.3389/fninf.2011.00013.

Gorgolewski, Krzysztof J., Oscar Esteban, Christopher J. Markiewicz, Erik Ziegler, David Gage

Ellis, Michael Philipp Notter, Dorota Jarecka, et al. 2018. “Nipype.” Software.

https://doi.org/10.5281/zenodo.596855.

Greve, Douglas N, and Bruce Fischl. 2009. “Accurate and Robust Brain Image Alignment Using

Boundary-Based Registration.” NeuroImage 48 (1): 63–72.

https://doi.org/10.1016/j.neuroimage.2009.06.060.

Hoopes, Andrew, Jocelyn S Mora, Adrian V Dalca, Bruce Fischl, and Malte Hoffmann. 2022.

“SynthStrip: Skull-Stripping for Any Brain Image.” NeuroImage 260. Elsevier: 119474.

Irfanoglu, Mustafa Okan, Amritha Nayak, Jeffrey Jenkins, and Carlo Pierpaoli. "TORTOISE v3:

Improvements and new features of the NIH diffusion MRI processing pipeline." In Program and

proceedings of the ISMRM 25th annual meeting and exhibition, Honolulu, HI, USA. 2017.

Irfanoglu, Mustafa Okan, Pooja Modi, Amritha Nayak, Elizabeth B. Hutchinson, Joelle Sarlls, and

Carlo Pierpaoli. "DR-BUDDI (Diffeomorphic Registration for Blip-Up blip-Down Diffusion

Imaging) method for correcting echo planar imaging distortions." Neuroimage 106 (2015): 284-

299.

Jenkinson, Mark, Peter Bannister, Michael Brady, and Stephen Smith. 2002. “Improved

Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain

Images.” NeuroImage 17 (2): 825–41. https://doi.org/10.1006/nimg.2002.1132.

Kellner, Elias, Bibek Dhital, Valerij G Kiselev, and Marco Reisert. 2016. “Gibbs-Ringing Artifact

Removal Based on Local Subvoxel-Shifts.” Magnetic Resonance in Medicine 76 (5). Wiley Online

Library: 1574–81.

Klein, Arno, Satrajit S. Ghosh, Forrest S. Bao, Joachim Giard, Yrjö Häme, Eliezer Stavsky, Noah

Lee, et al. 2017. “Mindboggling Morphometry of Human Brains.” PLOS Computational Biology

13 (2): e1005350. https://doi.org/10.1371/journal.pcbi.1005350.

Kruper, John, Jason D. Yeatman, Adam Richie-Halford, David Bloom, Mareike Grotheer, Sendy

Caffarra, Gregory Kiar et al. "Evaluating the reliability of human brain white matter

tractometry." Aperture neuro 1, no. 1 (2021).

Markiewicz, C.J., De La Vega, A., Wagner, A., Halchenko, Y.O., Finc, K., Ciric, R., Goncalves,

M., Nielson, D.M., Kent, J.D., Lee, J.A., Bansal, S., Poldrack, R.A. & Gorgolewski, K.J. (2022)

poldracklab/fitlins: 0.11.0. doi:10.5281/zenodo.1306215.

https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.5281/zenodo.596855
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1371/journal.pcbi.1005350
https://zenodo.org/doi/10.5281/zenodo.1306215

Patriat, Rémi, Richard C. Reynolds, and Rasmus M. Birn. 2017. “An Improved Model of Motion-

Related Signal Changes in fMRI.” NeuroImage 144, Part A (January): 74–82.

https://doi.org/10.1016/j.neuroimage.2016.08.051.

Power, Jonathan D., Anish Mitra, Timothy O. Laumann, Abraham Z. Snyder, Bradley L.

Schlaggar, and Steven E. Petersen. 2014. “Methods to Detect, Characterize, and Remove Motion

Artifact in Resting State fMRI.” NeuroImage 84 (Supplement C): 320–41.

https://doi.org/10.1016/j.neuroimage.2013.08.048.

Reuter, Martin, Herminia Diana Rosas, and Bruce Fischl. 2010. “Highly Accurate Inverse

Consistent Registration: A Robust Approach.” NeuroImage 53 (4): 1181–96.

https://doi.org/10.1016/j.neuroimage.2010.07.020.

Satterthwaite, Theodore D., Mark A. Elliott, Raphael T. Gerraty, Kosha Ruparel, James Loughead,

Monica E. Calkins, Simon B. Eickhoff, et al. 2013. “An improved framework for confound

regression and filtering for control of motion artifact in the preprocessing of resting-state

functional connectivity data.” NeuroImage 64 (1): 240–56.

https://doi.org/10.1016/j.neuroimage.2012.08.052.

Smith, Robert, Antonin Skoch, Claude J. Bajada, Svenja Caspers, and Alan Connelly. "Hybrid

surface-volume segmentation for improved anatomically-constrained tractography." (2020).

Smith, Robert E., Jacques-Donald Tournier, Fernando Calamante, and Alan Connelly.

"Anatomically-constrained tractography: improved diffusion MRI streamlines tractography

through effective use of anatomical information." Neuroimage 62, no. 3 (2012): 1924-1938.

Tournier, J-Donald, Chun-Hung Yeh, Fernando Calamante, Kuan-Hung Cho, Alan Connelly, and

Ching-Po Lin. "Resolving crossing fibres using constrained spherical deconvolution: validation

using diffusion-weighted imaging phantom data." Neuroimage 42, no. 2 (2008): 617-625.

Tournier, J-Donald, Fernando Calamante, and Alan Connelly. "Robust determination of the fibre

orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical

deconvolution." Neuroimage 35, no. 4 (2007): 1459-1472.

Tournier, J. Donald, Fernando Calamante, and Alan Connelly. "Improved probabilistic streamlines

tractography by 2nd order integration over fibre orientation distributions." In Proceedings of the

international society for magnetic resonance in medicine, vol. 1670. New Jersey, USA: John Wiley

& Sons, Inc, 2010.

Tournier, J-Donald, Robert Smith, David Raffelt, Rami Tabbara, Thijs Dhollander, Maximilian

Pietsch, Daan Christiaens, Ben Jeurissen, Chun-Hung Yeh, and Alan Connelly. "MRtrix3: A fast,

flexible and open software framework for medical image processing and

visualisation." Neuroimage 202 (2019): 116137.

https://doi.org/10.1016/j.neuroimage.2016.08.051
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2010.07.020
https://doi.org/10.1016/j.neuroimage.2012.08.052

Tustison, N. J., B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. 2010.

“N4ITK: Improved N3 Bias Correction.” IEEE Transactions on Medical Imaging 29 (6): 1310–

20. https://doi.org/10.1109/TMI.2010.2046908.

Tustison, N.J., Cook, P.A., Holbrook, A.J., Johnson, H.J., Muschelli, J., Devenyi, G.A., Duda,

J.T., Das, S.R., Cullen, N.C. & Gillen, D.L. (2021) The ANTsX ecosystem for quantitative

biological and medical imaging. Scientific reports. 11 (1), 1–13.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,

Mazoyer, B. & Joliot, M. (2002) Automated Anatomical Labeling of Activations in SPM Using a

Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage. 15

(1), 273–289. doi:10.1006/nimg.2001.0978.

Zhang, Y., M. Brady, and S. Smith. 2001. “Segmentation of Brain MR Images Through a Hidden

Markov Random Field Model and the Expectation-Maximization Algorithm.” IEEE Transactions

on Medical Imaging 20 (1): 45–57. https://doi.org/10.1109/42.906424.

https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/42.906424

	S1. Singularity/Apptainer to Docker Code Conversion Example
	S2. Register FreeSurfer and QSIPrep Outputs
	S3. Surface-Based Analysis First-Level GLM
	S4. Volumetric Analysis
	S5. Guide for Drawing fROIs
	S6. Detailed Pipeline Descriptions

