
Supplementary Material 

 
For “A practical guide for combining functional regions of interest and white matter 

bundles” (by Meisler, Kubota, et al.) 

 

S1. Singularity/Apptainer to Docker Code Conversion Example 

Here, we demonstrate converting an example BIDS application container command between 

Singularity/Apptainer and Docker syntaxes. These two commands will run synonymous processes. 

### First, Singularity/Apptainer  
singularity run --containall -e \ 
    -B ${bids}:/bids \ # Bind BIDS directory to container, mounting as /bids 
    -B ${workdir}:/work \ # Bind work directory to container, mounting as /work 
    -B ${fs_license}:/license.txt \ Bind license to container, mounting as /license.txt 
    /path/to/fmriprep_23.2.0a2.img \ # Container built with `singularity build` command 
    /bids /bids/derivatives participants \ # Begin fMRIPrep arguments here 
    -w /work --fs-license-file /license.txt \ 
    ${other_arguments_can_go_here} 
 
### Now, Docker 
docker run -ti --rm \ 
    -v ${bids}:/bids \ # Bind BIDS directory to container, mounting as /bids 
    -v ${workdir}:/work \ # Bind work directory to container, mounting as /work 
    -v ${fs_license}:/license.txt \ Bind license to container, mounting as /license.txt 
    nipreps/fmriprep:23.2.0a2 # Name as found in corresponding DockerHub web page 
    /bids /bids/derivatives participants \ # Begin fMRIPrep arguments here 
    -w /work --fs-license-file /license.txt \ 
    ${other_arguments_can_go_here} 

S2. Register FreeSurfer and QSIPrep Outputs 

OSF path to file: nsd_bids/code/qsiprep/fs_qsiprep_registration.sh 

#!/bin/bash -l 
## Define important paths 
bids="/path/to/nsd_bids/" # Or replace with your own BIDS dataset 
workdir="/path/to/scratch/space/" # e.g., /tmp 
qsiprep_IMG="/path/to/qsiprep_container.img" # Software container 
subject="sub-01" # Or replace with your own subject ID 
mkdir -p "${workdir}/${subject}" 
export SUBJECTS_DIR="${bids}/derivatives/freesurfer/" # Where FS outputs are 
 
## We can use the software in the QSIPrep container to run the commands below 
run_qsiprep_cmd="singularity exec --containall -e -B ${bids},${workdir} ${qsiprep_IMG}" # Alias 
for easy invocation of QSIPrep container 
 
# Convert from FreeSurfer .mgz file format to NIFTI 



${run_qsiprep_cmd} mrconvert -strides -1,-2,3 \ 
    ${SUBJECTS_DIR}/${subject}/mri/brain.mgz ${workdir}/${subject}/fs_brain.nii 
 
# Register FreeSurfer brain to QSIPrep T1w 
${run_qsiprep_cmd} antsRegistration --collapse-output-transforms 1 \ 
    --dimensionality 3 --float 0 \ 
    --initial-moving-transform [ ${bids}/derivatives/qsiprep/${subject}/anat/${subject}_desc-
preproc_T1w.nii, ${workdir}/${subject}/fs_brain.nii, 1 ] \ 
    --initialize-transforms-per-stage 0 --interpolation BSpline \ 
    --output [ ${workdir}/${subject}/transform, ${workdir}/${subject}/transform_Warped.nii.gz ] 
\ 
    --transform Rigid[ 0.1 ] \ 
    --metric Mattes[ ${bids}/derivatives/qsiprep/${subject}/anat/${subject}_desc-
preproc_T1w.nii, ${workdir}/${subject}/fs_brain.nii, 1, 32, Random, 0.25 ] \ 
    --convergence [ 1000x500x250x100, 1e-06, 10 ] \ 
    --smoothing-sigmas 3.0x2.0x1.0x0.0mm --shrink-factors 8x4x2x1 \ 
    --use-histogram-matching 0 \ 
    --masks [ ${bids}/derivatives/qsiprep/${subject}/anat/${subject}_desc-brain_mask.nii.gz, 
NULL ] \ 
    --winsorize-image-intensities [ 0.002, 0.998 ] \ 
    --write-composite-transform 0 
 
# Convert ANTs .mat transform to .txt, and rename it 
${run_qsiprep_cmd} ConvertTransformFile 3 \ 
    ${workdir}/${subject}/transform0GenericAffine.mat \ 
    ${workdir}/${subject}/${subject}_from-FS_to-T1wACPC_mode-image_xfm.txt 
 
# Convert ANTs transform to MRTrix compatible transform  
${run_qsiprep_cmd} transformconvert \ 
    ${workdir}/${subject}/${subject}_from-FS_to-T1wACPC_mode-image_xfm.txt \ 
    itk_import \ 
${bids}/derivatives/qsirecon/${subject}/anat/${subject}_from-FS_to-T1wACPC_mode-image_xfm.txt 

S3. Surface-Based Analysis First-Level GLM 

OSF path to file: nsd_bids/code/l1_gifti/l1_gifti.ipynb 

import os.path as op 
from os import makedirs 
import numpy as np 
from scipy import stats 
import nibabel as nib 
from nilearn.surface import load_surf_data 
from nilearn.glm.first_level import ( 
    make_first_level_design_matrix, 
    first_level_from_bids, 
) 
from nilearn.glm.first_level.first_level import run_glm 
from nilearn.glm.contrasts import compute_contrast 
 
### Helper function for saving GIFTI statmaps 
def save_statmap_to_gifti(data, outname): 
    """Save a statmap to a gifti file. 
    data: nilearn contrast model output, e.g., contrast.effect_size() 



    outname: output file name 
    """ 
    gii_to_save = nib.gifti.gifti.GiftiImage() 
    gii_to_save.add_gifti_data_array( 
        nib.gifti.gifti.GiftiDataArray(data=data, datatype="NIFTI_TYPE_FLOAT32") 
    ) 
    nib.save(gii_to_save, outname) 
 
### Define parameters here 
bids = "/path/to/nsd_bids/"  # Path to BIDS root 
fmriprep_dir = op.join( 
    "derivatives", "fmriprep" 
)  # BIDS-relative path to fMRIPrep 
subject = "sub-01"  # Subject name 
task = "floc"  # Task name 
space = "fsnative"  # BOLD projected on subject's freesurfer surface 
hemis = ["L", "R"]  # L for left, R for right 
use_smoothed = False 
run_nums = ["1", "2", "3", "4", "5", "6"] # Runs to process 
slice_time_ref = ( 
    0  # From the fMRIPrep command, align slice time correction to start of TR 
) 
 
### Define output directory 
outdir = op.join(bids, "derivatives", "l1_gifti", subject) 
if not op.exists(outdir): 
    makedirs(outdir) 
 
### Loop across hemispheres 
for hemi in hemis: 
    print("Processing hemi", hemi) 
     
    ### Final output dictionary for GLM contrast results (to be combined across runslater) 
    contrast_objs = {} 
 
    ### Loop over runs 
    for run_num in run_nums: 
        print("Processing run", run_num) 
 
        ### Load GIFTI data and z-score it 
        run = ( 
            "_run-" + run_num 
        )  # Run string in filename (define as empty string "" if no run label) 
        func_name = ( 
            f"{subject}_task-{task}{run}_hemi-{hemi}_space-{space}_bold.func.gii" 
        ) 
        # If you smoothed data beforehand, make sure to point this to your smoothed file name! 
        if use_smoothed: 
            func_name = func_name.replace("_bold", "_desc-smoothed_bold") 
        gii_path = op.join(bids, fmriprep_dir, subject, "func", func_name) 
        gii_data = load_surf_data(gii_path) 
        gii_data_std = stats.zscore(gii_data, axis=1) 
 
        ### Get shape of data 



        n_vertices = np.shape(gii_data)[0] 
        n_scans = np.shape(gii_data)[1] 
 
        ### Use the volumetric data just to get the events and confounds file 
        img_filters = [("desc", "preproc")] 
        # If multiple runs are present, then add the run number to filter to specify 
        if len(run) > 0: 
            img_filters.append(("run", run_num)) 
        l1 = first_level_from_bids( 
            bids, 
            task, 
            space_label="T1w", 
            sub_labels=[subject[4:]], 
            slice_time_ref=slice_time_ref, 
            hrf_model="spm", 
            drift_model=None,  # Do not high_pass since we use fMRIPrep's cosine regressors 
            drift_order=0,  # Do not high_pass since we use fMRIPrep's cosine regressors 
            high_pass=None,  # Do not high_pass since we use fMRIPrep's cosine regressors 
            img_filters=img_filters, 
            derivatives_folder=fmriprep_dir, 
        ) 
 
        ### Extract information from the prepared model 
        t_r = l1[0][0].t_r 
        events = l1[2][0][0]  # Dataframe of events information 
        confounds = l1[3][0][0]  # Dataframe of confounds 
 
        ### From the confounds file, extract only those of interest 
        # Start with the motion and acompcor regressors 
        motion_keys = [ 
            "framewise_displacement", 
            "rot_x", 
            "rot_y", 
            "rot_z", 
            "trans_x", 
            "trans_y", 
            "trans_z", 
        ] 
        # Get ACompCor components (all to explain 50% variance) 
        a_compcor_keys = [key for key in confounds.keys() if "a_comp_cor" in key] 
 
        # Now add non-steady-state volumes 
        non_steady_state_keys = [key for key in confounds.keys() if "non_steady" in key] 
 
        # Add cosine regressors which act to high-pass filter data at 1/128 Hz 
        cosine_keys = [key for key in confounds.keys() if "cosine" in key] 
 
        # Pull out the confounds we want to keep 
        confound_keys_keep = ( 
            motion_keys + a_compcor_keys + cosine_keys + non_steady_state_keys 
        ) 
        confounds_keep = confounds[confound_keys_keep] 
 
        # Set first value of FD column to the column mean 



        confounds_keep["framewise_displacement"][0] = np.nanmean( 
            confounds_keep["framewise_displacement"] 
        ) 
 
        ### Create the design matrix 
        # Start by getting times of scans 
        frame_times = t_r * (np.arange(n_scans) + slice_time_ref) 
        # Now use Nilearn to create the design matrix from the events files 
        design_matrix = make_first_level_design_matrix( 
            frame_times, 
            events=events, 
            hrf_model="spm",  # convolve with SPM's canonical HRF function 
            drift_model=None,  # we use fMRIPrep's cosine regressors 
            add_regs=confounds_keep, 
        ) 
 
        # z-score the design matrix to standardize it 
        design_matrix_std = stats.zscore(design_matrix, axis=0) 
        # add constant in to standardized design matrix since you cannot z-score a constant 
        design_matrix_std["constant"] = np.ones(len(design_matrix_std)).astype(int) 
 
        ### Run the GLM 
        Y = np.transpose(gii_data_std) 
        X = np.asarray(design_matrix) 
        labels, estimates = run_glm(Y, X, n_jobs=-1) 
 
        ### Define the contrasts 
        contrast_matrix = np.eye(design_matrix.shape[1]) 
        basic_contrasts = dict( 
            [ 
                (column, contrast_matrix[i]) 
                for i, column in enumerate(design_matrix.columns) 
            ] 
        ) 
        contrasts = { 
            "facesGTother": ( 
                basic_contrasts["adult"] / 2 
                + basic_contrasts["child"] / 2 
                - basic_contrasts["body"] / 8 
                - basic_contrasts["limb"] / 8 
                - basic_contrasts["number"] / 8 
                - basic_contrasts["word"] / 8 
                - basic_contrasts["car"] / 8 
                - basic_contrasts["instrument"] / 8 
                - basic_contrasts["corridor"] / 8 
                - basic_contrasts["house"] / 8 
            ), 
            "charactersGTother": ( 
                basic_contrasts["number"] / 2 
                + basic_contrasts["word"] / 2 
                - basic_contrasts["body"] / 8 
                - basic_contrasts["limb"] / 8 
                - basic_contrasts["adult"] / 8 
                - basic_contrasts["child"] / 8 



                - basic_contrasts["car"] / 8 
                - basic_contrasts["instrument"] / 8 
                - basic_contrasts["corridor"] / 8 
                - basic_contrasts["house"] / 8 
            ), 
            "placesGTother": ( 
                basic_contrasts["corridor"] / 2 
                + basic_contrasts["house"] / 2 
                - basic_contrasts["body"] / 8 
                - basic_contrasts["limb"] / 8 
                - basic_contrasts["adult"] / 8 
                - basic_contrasts["child"] / 8 
                - basic_contrasts["car"] / 8 
                - basic_contrasts["instrument"] / 8 
                - basic_contrasts["number"] / 8 
                - basic_contrasts["word"] / 8 
            ), 
            "bodiesGTother": ( 
                basic_contrasts["body"] / 2 
                + basic_contrasts["limb"] / 2 
                - basic_contrasts["corridor"] / 8 
                - basic_contrasts["house"] / 8 
                - basic_contrasts["adult"] / 8 
                - basic_contrasts["child"] / 8 
                - basic_contrasts["car"] / 8 
                - basic_contrasts["instrument"] / 8 
                - basic_contrasts["number"] / 8 
                - basic_contrasts["word"] / 8 
            ), 
            "objectsGTother": ( 
                basic_contrasts["car"] / 2 
                + basic_contrasts["instrument"] / 2 
                - basic_contrasts["corridor"] / 8 
                - basic_contrasts["house"] / 8 
                - basic_contrasts["adult"] / 8 
                - basic_contrasts["child"] / 8 
                - basic_contrasts["body"] / 8 
                - basic_contrasts["limb"] / 8 
                - basic_contrasts["number"] / 8 
                - basic_contrasts["word"] / 8 
            ), 
        } 
 
        ### Compute the contrasts 
        for index, (contrast_id, contrast_val) in enumerate(contrasts.items()): 
            # Add a label to the output dictionary if not present 
            if contrast_id not in contrast_objs: 
                contrast_objs[contrast_id] = [] 
                 
            # Define a name template for output statistical maps (stat-X is replaced later on) 
            outname_base = f"{subject}{run}_hemi-{hemi}_space-{space}_contrast-
{contrast_id}_stat-X_statmap.func.gii" 
            if use_smoothed: 
                outname_base = outname_base.replace( 



                    "_statmap", "_desc-smoothed_statmap" 
                ) 
            outname_base = op.join(outdir, outname_base)  # Place in output directory 
 
            # compute contrast-related statistics 
            contrast = compute_contrast( 
                labels, estimates, contrast_val, contrast_type="t" 
            ) 
            # add contrast to the output dictionary 
            contrast_objs[contrast_id].append(contrast) 
 
            # do the run-specific processing 
            betas = contrast.effect_size() 
            z_score = contrast.z_score() 
            t_value = contrast.stat() 
            p_value = contrast.p_value() 
            variance = contrast.effect_variance() 
 
            # Save the value maps as GIFTIs 
            # Effect size 
            outname = outname_base.replace("stat-X", "stat-effect") 
            save_statmap_to_gifti(betas, outname) 
 
            # z-score 
            outname = outname_base.replace("stat-X", "stat-z") 
            save_statmap_to_gifti(z_score, outname) 
 
            # t-value 
            outname = outname_base.replace("stat-X", "stat-t") 
            save_statmap_to_gifti(t_value, outname) 
 
            # p-value 
            outname = outname_base.replace("stat-X", "stat-p") 
            save_statmap_to_gifti(p_value, outname) 
 
            # variance 
            outname = outname_base.replace("stat-X", "stat-variance") 
            save_statmap_to_gifti(variance, outname) 
 
    ### Now produce the session-wide statistical maps, averaging across all runs 
    if len(run_nums) > 1: # Only do if multiple runs are present 
        print("Producing Session-Wide Statistical Maps") 
        # Loop across contrast IDs 
        for index, (contrast_id, contrast_val) in enumerate(contrasts.items()): 
            # Add run-wide contrast objects together 
            contrast_concat = contrast_objs[contrast_id][0] 
            for i in range(1, len(contrast_objs[contrast_id])): 
                contrast_concat = contrast_concat.__add__(contrast_objs[contrast_id][i]) 
 
            # Calculate the statistical maps 
            betas = contrast_concat.effect_size() 
            z_score = contrast_concat.z_score() 
            t_value = contrast_concat.stat() 
            p_value = contrast_concat.p_value() 



            variance = contrast_concat.effect_variance() 
 
            # Define output name template 
            outname_base = f"{subject}_hemi-{hemi}_space-{space}_contrast-{contrast_id}_stat-
X_statmap.func.gii" 
            if use_smoothed: 
                outname_base = outname_base.replace("_statmap", "_desc-smoothed_statmap") 
            outname_base = op.join(outdir, outname_base) 
 
            # Save the value maps as GIFTIs 
            # Effect size 
            outname = outname_base.replace("stat-X", "stat-effect") 
            save_statmap_to_gifti(betas, outname) 
 
            # z-score 
            outname = outname_base.replace("stat-X", "stat-z") 
            save_statmap_to_gifti(z_score, outname) 
 
            # t-value 
            outname = outname_base.replace("stat-X", "stat-t") 
            save_statmap_to_gifti(t_value, outname) 
 
            # p-value 
            outname = outname_base.replace("stat-X", "stat-p") 
            save_statmap_to_gifti(p_value, outname) 
 
            # variance 
            outname = outname_base.replace("stat-X", "stat-variance") 
            save_statmap_to_gifti(variance, outname) 

S4. Volumetric Analysis 

One can use Fitlins (https://github.com/poldracklab/fitlins) (Markiewicz et al., 2022) to run GLMs 

on the fMRIPrep-preprocessed volumetric data based on a model specification file and  

(https://bids-standard.github.io/stats-models/#) the BIDS events descriptor files in a subject’s func 

folder. A model for the functional localizer task is shared below (as well as in the OSF repository). 

The model shared here will, within a given subject, calculate each categorically-selective 

functional contrast. Non-steady state volumes are censored, and confounds include framewise 

displacement, 6 head motion parameters, and anatomical CompCor component that explain 50% 

of signal variance in a combined white matter / cerebrospinal fluid mask(Behzadi et al., 2007) 

Cosine-basis functions are regressed, acting as a high-pass filter (1/128 seconds). Session-averaged 

statistical maps across all runs are also produced. 

 

OSF path to file: nsd_bids/models/model-floc_desc-6MP50ACompCor_smdl.json 

{ 
   "Name": "floc-model-6MP50ACompCor", 
   "BIDSModelVersion": "1.0.0", 
   "Description": "NSD contrasts; 6 Head Motion Parameters; FD; Non Steady-State; 
50% Variance ACompCor Components", 
   "Input": { 
       "task": [ 

https://github.com/poldracklab/fitlins
https://bids-standard.github.io/stats-models/


           "floc" 
       ] 
   }, 
   "Nodes": [ 
       { 
           "Level": "run", 
           "Name": "runFloc6MP50ACompCor", 
           "GroupBy": [ 
               "subject", 
               "session", 
               "run" 
           ], 
           "Transformations": { 
               "Transformer": "pybids-transforms-v1", 
               "Instructions": [ 
                   { 
                       "Name": "Factor", 
                       "Input": [ 
                           "trial_type" 
                       ] 
                   }, 
                   { 
                       "Name": "Convolve", 
                       "Input": [ 
                           "trial_type.body", 
                           "trial_type.limb", 
                           "trial_type.number", 
                           "trial_type.word", 
                           "trial_type.adult", 
                           "trial_type.child", 
                           "trial_type.car", 
                           "trial_type.instrument", 
                           "trial_type.corridor", 
                           "trial_type.house" 
                       ], 
                       "Model": "spm" 
                   } 
               ] 
           }, 
           "Model": { 
               "X": [ 
                   "trial_type.body", 
                   "trial_type.limb", 
                   "trial_type.number", 
                   "trial_type.word", 
                   "trial_type.adult", 
                   "trial_type.child", 
                   "trial_type.car", 
                   "trial_type.instrument", 
                   "trial_type.corridor", 
                   "trial_type.house", 
                   "non_steady_state*", 
                   "framewise_displacement", 
                   "trans_x", 



                   "trans_y", 
                   "trans_z", 
                   "rot_x", 
                   "rot_y", 
                   "rot_z", 
                   "a_comp_cor*", 
                   "cosine*", 
                   1 
               ], 
               "Type": "glm" 
           }, 
           "Contrasts": [ 
               { 
                   "Name": "bodies_gt_other", 
                   "ConditionList": [ 
                       "trial_type.body", 
                       "trial_type.limb", 
                       "trial_type.number", 
                       "trial_type.word", 
                       "trial_type.adult", 
                       "trial_type.child", 
                       "trial_type.car", 
                       "trial_type.instrument", 
                       "trial_type.corridor", 
                       "trial_type.house" 
                   ], 
                   "Weights": [ 
                       0.5, 
                       0.5, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125 
                   ], 
                   "Test": "t" 
               }, 
               { 
                   "Name": "characters_gt_other", 
                   "ConditionList": [ 
                       "trial_type.body", 
                       "trial_type.limb", 
                       "trial_type.number", 
                       "trial_type.word", 
                       "trial_type.adult", 
                       "trial_type.child", 
                       "trial_type.car", 
                       "trial_type.instrument", 
                       "trial_type.corridor", 
                       "trial_type.house" 
                   ], 



                   "Weights": [ 
                       -0.125, 
                       -0.125, 
                       0.5, 
                       0.5, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125 
                   ], 
                   "Test": "t" 
               }, 
               { 
                   "Name": "faces_gt_other", 
                   "ConditionList": [ 
                       "trial_type.body", 
                       "trial_type.limb", 
                       "trial_type.number", 
                       "trial_type.word", 
                       "trial_type.adult", 
                       "trial_type.child", 
                       "trial_type.car", 
                       "trial_type.instrument", 
                       "trial_type.corridor", 
                       "trial_type.house" 
                   ], 
                   "Weights": [ 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       0.5, 
                       0.5, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125 
                   ], 
                   "Test": "t" 
               }, 
               { 
                   "Name": "objects_gt_other", 
                   "ConditionList": [ 
                       "trial_type.body", 
                       "trial_type.limb", 
                       "trial_type.number", 
                       "trial_type.word", 
                       "trial_type.adult", 
                       "trial_type.child", 
                       "trial_type.car", 
                       "trial_type.instrument", 
                       "trial_type.corridor", 



                       "trial_type.house" 
                   ], 
                   "Weights": [ 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       0.5, 
                       0.5, 
                       -0.125, 
                       -0.125 
                   ], 
                   "Test": "t" 
               }, 
               { 
                   "Name": "places_gt_other", 
                   "ConditionList": [ 
                       "trial_type.body", 
                       "trial_type.limb", 
                       "trial_type.number", 
                       "trial_type.word", 
                       "trial_type.adult", 
                       "trial_type.child", 
                       "trial_type.car", 
                       "trial_type.instrument", 
                       "trial_type.corridor", 
                       "trial_type.house" 
                   ], 
                   "Weights": [ 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       -0.125, 
                       0.5, 
                       0.5 
                   ], 
                   "Test": "t" 
               } 
           ] 
       }, 
       { 
           "Level": "session", 
           "Name": "sessionFloc6MP50ACompCor", 
           "GroupBy": [ 
               "session", 
               "subject", 
               "contrast" 
           ], 



           "Model": { 
               "X": [ 
                   1 
               ], 
               "Type": "meta" 
           }, 
           "DummyContrasts": { 
               "Test": "t" 
           } 
       } 
   ], 
   "Edges": [ 
       { 
           "Source": "runFloc6MP50ACompCor", 
           "Destination": "sessionFloc6MP50ACompCor" 
       } 
   ] 
} 

We can run the model with the following code (based on Fitlins version 0.11.0): 

#!/bin/bash -l 
## Define important paths and parameters 
bids="/path/to/nsd_bids/" # Or replace with your own BIDS dataset 
workdir="/path/to/scratch/space/" # e.g., /tmp 
fitlins_IMG="/path/to/fitlins_container.img" # Software container 
subject="sub-01" # Or replace with your own subject ID 
task="floc" # Task name of BOLD files 
desc="6MP50ACompCor" # Model description 
model_file={bids}/models/model-${task}_desc-${desc}_smdl.json 
smoothing="4" # Smoothing kernel mm FWHM, can also set it at 0 for no smoothing 
space="T1w" # Analyze the native space volumetric outputs 
# Note: you can also process MNI or surface CIFTI files if available 
 
# Run the FitLins command 
singularity run --containall -e -B ${bids},${workdir} \ # Can also use Docker 
    ${fitlins_IMG} ${bids} ${bids}/derivatives/fitlins participant \ 
    --participant-label ${subject} \ # Remove argument to process everyone 
    -w ${workdir} \ # Working directory 
    -m ${model_file} \ # Path to model specification 
    -d ${bids}/derivatives/fmriprep/ # fMRIPrep outputs from earlier 
    --space ${space} \ # Space of outputs 
    -s ${smoothing} \ # Smoothing kernel 

For an example of statistically thresholding an fROI, we can identify the voxels in the 90th 

percentile of z-scores for the character-selective contrast within the left fusiform gyrus, defined by 

the Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002). Note this code uses the 

Nilearn (Abraham et al., 2014) and ANTsPy (Avants, Tustison & Song, 2009; Tustison et al., 2021) 

software packages. 

import os.path as op 
from os import makedirs 
import numpy as np 
from nilearn.image import load_img, new_img_like 
from nilearn.datasets import fetch_atlas_aal 



from ants import apply_transforms, image_read, image_write 
 
# Define parameters here 
bids="/path/to/nsd_bids/" # Path to BIDS root 
fmriprep_dir = op.join("derivatives","fmriprep") # BIDS-relative path to fMRIPrep 
fitlins_dir = op.join("derivatives","fitlins") # BIDS-relative path to Fitlins 
subject = "sub-01" # Subject name 
node_name = "sessionFloc6MP50ACompCor" # Node name defined by Fitlins model 
contrast_name = "charactersGtOther" # Contrast name defined by Fitlins model 
percentile = 90 # Find top 10% of voxels in left IFG 
out_dir = op.join(bids, 'derivatives', 'threshold_fROIs', subject) 
if not op.exists(out_dir): 
    makedirs(out_dir) 
hemi = "L" 
region = "Fusiform" 
aal_regionname = f"Fusiform_{hemi}" # Region to extract 
out_path = op.join(out_dir, f"{subject}_hemi-{hemi}_space-T1w_contrast-{contrast_name}_stat-
z_desc-{region}_desc-thresholded_roi.nii.gz") # Where to save the output image 
 
### Load Z-stat image 
z_img_path = op.join(bids,fitlins_dir,f"node-{node_name}",subject, 
                          f"{subject}_contrast-{contrast_name}_stat-z_statmap.nii.gz") 
z_img = load_img(z_img_path) 
z_img_affine = z_img.affine # Affine matrix 
z_img_values = z_img.get_fdata() # Array of data 
 
### Register the AAL atlas to native space using ANTs 
# Load the Z-stat img in a way that ANTs likes 
z_img_ants = image_read(z_img_path) 
 
# Download the AAL atlas 
AAL = fetch_atlas_aal() 
AAL_MNI_path = AAL.maps 
AAL_MNI = image_read(AAL_MNI_path) 
 
# Find the MNI-to-Native space transformation from fMRIPrep 
MNI2Native_reg = op.join(bids,fmriprep_dir,subject,"anat",f"{subject}_from-
MNI152NLin2009cAsym_to-T1w_mode-image_xfm.h5") 
 
# Run the registration and save out the image 
AAL_native_path = op.join(bids,fmriprep_dir,subject,"anat",f"{subject}_desc-AAL_dseg.nii.gz") 
# Where to save registered atlas 
AAL_native = apply_transforms(z_img_ants, AAL_MNI, transformlist=[MNI2Native_reg], 
interpolator="nearestNeighbor") 
image_write(AAL_native, AAL_native_path) 
 
### Get binary mask of the region 
# Get index of AAL labels that contains "Fusiform_L" 
region_index = AAL.labels.index(aal_regionname) 
region_value = np.asarray(AAL.indices)[region_index].astype(int) 
segmentation = load_img(AAL_native_path) # Load out native space segmentation 
segmentation_values = segmentation.get_fdata() 
# Make binary mask of all region values 
region_mask_vals = np.full(np.shape(segmentation_values), False) 



region_mask_vals[segmentation_values==region_value] = True 
region_mask = new_img_like(z_img, region_mask_vals, affine=z_img_affine, copy_header=True) 
 
### Find top 10% of values in region 
z_img_values_masked = z_img_values[region_mask_vals] 
percentile_thresh = np.percentile(z_img_values_masked, percentile) # The critical threshold 
z_inds_gt_thresh_in_mask = (z_img_values>=percentile_thresh) * region_mask_vals 
z_img_masked_thresholded = new_img_like(z_img, z_inds_gt_thresh_in_mask, affine=z_img_affine, 
copy_header=True) 
z_img_masked_thresholded.to_filename(out_path) # Save the image out 

S5. Guide for Drawing fROIs 

Here we provide a guide for hand drawing ROIs using Freeview. This functionality is only 

available in Freeview version >= 3 (corresponds to FreeSurfer version >= 7.0). The example fROI 

is mOTS-words which is named for its function (word-selective) and its anatomy (located in the 

mid-occipitotemporal sulcus region). We load the z-statistic map for the contrast of characters 

compared to other stimuli (Figure S1, A), threshold the map with a z-statistic > 3 (Figure S1, B), 

draw a path around the selected vertices that are above threshold and match our anatomical 

landmark of interest (Figure S1, A), close the path (Figure S1, D and E), and fill the ROI (Figure 

S1, F). 

 
Figure S1. Tutorial for hand drawing ROIs. (A) The first step is loading the statistical map. This 

map is the z-statistic contrast between response to characters compared to all other categories. 

(B) Next you can threshold the map, here we threshold with (z > 3). (C) Use the Path/Custom Fill 

tool to draw dots around your desired region of interest. Here we are defining mOTS-words so we 

choose vertices that are in the mid-occipital temporal sulcus region. (D) Use the Make Closed 

Path tool to close the path. (E) Put a dot in the center of your closed path. (F) Use the fill option 

to fill your closed path. 



S6. Detailed Pipeline Descriptions 

The below boilerplate texts were automatically generated by fMRIPrep and QSIPrep with the 

express intention that users should copy and paste this text into their manuscripts unchanged. 

They are released under the CC0 license. 

 
S6.1 Diffusion-Weighted Image Processing Pipeline 

Preprocessing was performed using QSIPrep 0.19.1, which is based on Nipype 1.8.6 

(Gorgolewski et al. (2011); Gorgolewski et al. (2018); RRID:SCR_002502). 

 

S6.1.1 Anatomical data preprocessing 

A total of 6 T1-weighted (T1w) images were found within the input BIDS dataset. All of them 

were corrected for intensity non-uniformity (INU) using N4BiasFieldCorrection (Tustison et 

al. 2010, ANTs 2.4.3). A T1w-reference map was computed after registration of 6 T1w images 

(after INU-correction) using antsRegistration [ANTs 2.4.3]. The anatomical reference image 

was reoriented into AC-PC alignment via a 6-DOF transform extracted from a full affine 

registration to the MNI152NLin2009cAsym template. A full nonlinear registration to the template 

from AC-PC space was estimated via symmetric nonlinear registration (SyN) using 

antsRegistration. Brain extraction was performed on the T1w image using SynthStrip 

(Hoopes et al. 2022) and automated segmentation was performed using SynthSeg (Billot, Greve, 

et al. 2023; Billot et al., 2023) from FreeSurfer version 7.3.1. 

 

S6.1.2 Diffusion data preprocessing 

Images were grouped into two phase encoding polarity groups. A total of 2 DWI series in the j+ 

phase-encoding direction distortion group were concatenated, with preprocessing operations 

performed on individual DWI series before concatenation. A total of 2 DWI series in the j- phase-

encoding direction distortion group were concatenated, with preprocessing operations performed 

on individual DWI series before concatenation. Any images with a b-value less than 100 s/mm^2 

were treated as a b=0 image. Denoising using patch2self (Fadnavis et al., 2020) was applied 

with settings based on developer recommendations. After patch2self, Gibbs unringing was 

performed using MRtrix3’s mrdegibbs (Kellner et al. 2016). Following unringing, the mean 

intensity of the DWI series was adjusted so all the mean intensity of the b=0 images matched 

across each separate DWI scanning sequence. B1 field inhomogeneity was corrected using 

dwibiascorrect from MRtrix3 with the N4 algorithm (Tustison et al. 2010) after corrected 

images were resampled. Both distortion groups were then merged into a single file, as required for 

the FSL workflows. 

 

FSL (version 6.0.5.1:57b01774)’s eddy was used for head motion correction and Eddy current 

correction (Andersson and Sotiropoulos 2016). Eddy was configured with a q-space smoothing 

factor of 10, a total of 5 iterations, and 1000 voxels used to estimate hyperparameters. A linear first 

level model and a linear second level model were used to characterize Eddy current-related spatial 

distortion. q-space coordinates were forcefully assigned to shells. Field offset was attempted to be 

separated from subject movement. Shells were aligned post-eddy. Eddy’s outlier replacement was 

run (Andersson et al. 2016). Data were grouped by slice, only including values from slices 

determined to contain at least 250 intracerebral voxels. Groups deviating by more than 4 standard 

deviations from the prediction had their data replaced with imputed values. 



 

Data was collected with reversed phase-encode blips, resulting in pairs of images with distortions 

going in opposite directions. Here, multiple DWI series were acquired with opposite phase 

encoding directions. A b=0 image and the Fractional Anisotropy images from both phase encoding 

directions were used together in a multi-modal registration to estimate the susceptibility-induced 

off-resonance field. A T2-weighted image was included in the multimodal registration. An updated 

version of DRBUDDI (Irfanoglu et al., 2015), part of the TORTOISE (Irfanoglu et al., 2017) 

software package was used to estimate distortion. Signal intensity was adjusted in the final 

interpolated images using a method similar to LSR. Several confounding time-series were 

calculated based on the preprocessed DWI: framewise displacement (FD) using the 

implementation in Nipype (following the definitions by Power et al. 2014). The head-motion 

estimates calculated in the correction step were also placed within the corresponding confounds 

file. Slicewise cross correlation was also calculated. The DWI time-series were resampled to 

ACPC, generating a preprocessed DWI run in ACPC space with 1.25mm isotropic voxels. 

 

Many internal operations of QSIPrep use Nilearn 0.10.2 (Abraham et al. 2014, 

RRID:SCR_001362) and DIPY (Garyfallidis et al. 2014). For more details of the pipeline, see the 

section corresponding to workflows in QSIPrep’s documentation. 

 

S6.1.3 Diffusion data postprocessing 

 

Reconstruction was performed using QSIprep 0.19.1, which is based on Nipype 1.8.6 

(Gorgolewski et al. (2011); Gorgolewski et al. (2018); RRID:SCR_002502). 

 

QSIPrep-preprocessed T1w images and brain masks were used. A hybrid surface/volume 

segmentation was created [Smith 2020]. FreeSurfer outputs were registered to the QSIPrep 

outputs. Multi-tissue fiber response functions were estimated using the dhollander algorithm 

(Dhollander et al., 2019). FODs were estimated via constrained spherical deconvolution (CSD, 

Tournier et al., 2007, 2008) using an unsupervised multi-tissue method (Dhollander et al., 2016, 

2019). Reconstruction was done using MRtrix3 (Tournier et al., 2019). FODs were intensity-

normalized using mtnormalize (Dhollander et al., 2021). The FODs and surface/volume 

segmentation were used for anatomically-constrained  iFOD2 tractography (Smith et al., 2012, 

2020). 10 million streamlines with a length of 30-250 mm were created, with backtracking and 

cropping at the gray matter white matter interface enabled. These streamlines were then fed into 

PyAFQ to segment major white matter bundles (Kruper et al., 2021). 

 

S6.2 Functional MRI Processing Pipeline 

 

Results included in this manuscript come from preprocessing performed using fMRIPrep 23.2.0a2 

(Esteban et al. (2019); Esteban et al. (2018); RRID:SCR_016216), which is based on Nipype 1.8.6 

(K. Gorgolewski et al. (2011); K. J. Gorgolewski et al. (2018); RRID:SCR_002502). 

 

S6.2.1 Preprocessing of B0 inhomogeneity mappings 

 

 A total of 3 fieldmaps were found available within the input BIDS structure for this particular 

subject. A B0 nonuniformity map (or fieldmap) was estimated from the phase-drift map(s) measure 



with two consecutive GRE (gradient-recalled echo) acquisitions. The corresponding phase-map(s) 

were phase-unwrapped with prelude (FSL). 

 

S6.2.2 Anatomical data preprocessing 

 

A total of 6 T1-weighted (T1w) images were found within the input BIDS dataset. Each T1w image 

was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et 

al. 2010), distributed with ANTs 2.5.0 (Avants et al. 2008, RRID:SCR_004757). The T1w-

reference was then skull-stripped with a Nipype implementation of the 

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. 

Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) 

was performed on the brain-extracted T1w using fast (FSL (version unknown), 

RRID:SCR_002823, Zhang, Brady, and Smith 2001). An anatomical T1w-reference map was 

computed after registration of 6 T1w images (after INU-correction) using 

mri_robust_template (FreeSurfer 7.3.2, Reuter, Rosas, and Fischl 2010). An anatomical T2w-

reference map was computed after registration of 3 T2w images (after INU-correction) using 

mri_robust_template (FreeSurfer 7.3.2, Reuter, Rosas, and Fischl 2010). Brain surfaces were 

reconstructed using recon-all (FreeSurfer 7.3.2, RRID:SCR_001847, Dale, Fischl, and Sereno 

1999), and the brain mask estimated previously was refined with a custom variation of the method 

to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of 

Mindboggle (RRID:SCR_002438, Klein et al. 2017). A T2-weighted image was used to improve 

pial surface refinement. Brain surfaces were reconstructed using recon-all (FreeSurfer 7.3.2, 

RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and the brain mask estimated previously was 

refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 

segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, Klein et al. 2017). 

Volume-based spatial normalization to two standard spaces (MNI152NLin2009cAsym, 

MNI152NLin6Asym) was performed through nonlinear registration with antsRegistration 

(ANTs 2.5.0), using brain-extracted versions of both T1w reference and the T1w template. The 

following templates were were selected for spatial normalization and accessed with TemplateFlow 

(23.1.0, Ciric et al. 2022): ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et 

al. (2009), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], FSL’s MNI ICBM 

152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model [Evans 

et al. (2012), RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym]. Grayordinate 

“dscalar” files containing 91k samples were resampled onto fsLR using the Connectome 

Workbench (Glasser et al. 2013). 

 

S6.2.3 Functional data preprocessing 

 

For each of the 6 BOLD runs found per subject (across all tasks and sessions), the following 

preprocessing was performed. First, a reference volume was generated, using a custom 

methodology of fMRIPrep, for use in head motion correction. Head-motion parameters with 

respect to the BOLD reference (transformation matrices, and six corresponding rotation and 

translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL, 

Jenkinson et al. 2002). The estimated fieldmap was then aligned with rigid-registration to the target 

EPI (echo-planar imaging) reference run. The field coefficients were mapped on to the reference 

EPI using the transform. The BOLD reference was then co-registered to the T1w reference using 



bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl 

2009). Co-registration was configured with six degrees of freedom. Several confounding time-

series were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS 

and three region-wise global signals. FD was computed using two formulations following Power 

(absolute sum of relative motions, Power et al. (2014)) and Jenkinson (relative root mean square 

displacement between affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each 

functional run, both using their implementations in Nipype (following the definitions by Power et 

al. 2014). The three global signals are extracted within the CSF, the WM, and the whole-brain 

masks. Additionally, a set of physiological regressors were extracted to allow for component-based 

noise correction (CompCor, Behzadi et al. 2007). Principal components are estimated after high-

pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) 

for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor 

components are then calculated from the top 2% variable voxels within the brain mask. For 

aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in 

anatomical space. The implementation differs from that of Behzadi et al. in that instead of eroding 

the masks by 2 pixels on BOLD space, a mask of pixels that likely contain a volume fraction of 

GM is subtracted from the aCompCor masks. This mask is obtained by dilating a GM mask 

extracted from the FreeSurfer’s aseg segmentation, and it ensures components are not extracted 

from voxels containing a minimal fraction of GM. Finally, these masks are resampled into BOLD 

space and binarized by thresholding at 0.99 (as in the original implementation). Components are 

also calculated separately within the WM and CSF masks. For each CompCor decomposition, the 

k components with the largest singular values are retained, such that the retained components’ time 

series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, 

combined, or temporal). The remaining components are dropped from consideration. The head-

motion estimates calculated in the correction step were also placed within the corresponding 

confounds file. The confound time series derived from head motion estimates and global signals 

were expanded with the inclusion of temporal derivatives and quadratic terms for each 

(Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardized 

DVARS were annotated as motion outliers. Additional nuisance timeseries are calculated by means 

of principal components analysis of the signal found within a thin band (crown) of voxels around 

the edge of the brain, as proposed by (Patriat, Reynolds, and Birn 2017). The BOLD time-series 

were resampled onto the following surfaces (FreeSurfer reconstruction nomenclature): fsnative. 

The BOLD time-series were resampled onto the left/right-symmetric template “fsLR” using the 

Connectome Workbench (Glasser et al. 2013). A “goodvoxels” mask was applied during volume-

to-surface sampling in fsLR space, excluding voxels whose time-series have a locally high 

coefficient of variation. Grayordinates files (Glasser et al. 2013) containing 91k samples were also 

generated with surface data transformed directly to fsLR space and subcortical data transformed 

to 2 mm resolution MNI152NLin6Asym space. All resamplings can be performed with a single 

interpolation step by composing all the pertinent transformations (i.e. head-motion transform 

matrices, susceptibility distortion correction when available, and co-registrations to anatomical 

and output spaces). Gridded (volumetric) resamplings were performed using nitransforms, 

configured with cubic B-spline interpolation. Non-gridded (surface) resamplings were performed 

using mri_vol2surf (FreeSurfer). 

 



Many internal operations of fMRIPrep use Nilearn 0.10.2 (Abraham et al. 2014, 

RRID:SCR_001362), mostly within the functional processing workflow. For more details of the 

pipeline, see the section corresponding to workflows in fMRIPrep’s documentation. 
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