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1 SUPPLEMENTARY MATERIAL

 1.1 Model Architecture

Supplementary Table 1. Model Architectures
Model Architecture # Hidden Layers Nonlinearity Channels

Fully Connected 1,3 None, ReLU 3072
Local Kernel Convolution 1,3 None, ReLU 32
Full Kernel Convolution 1,3 None, ReLU 32

Locally Connected 1,3 None, ReLU 32
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Supplementary Table 2. Model Configurations for ImageNet Trained Models. All models were
pulled from the timm package.

Model Model Type Model timm package name
ResNet50 Convolutional resnet50d

EfficientNet Convolutional tf_efficientnet_b0_ns
RepVGG Convolutional repvgg_b3
ConvViT Hybrid convit_base

ViT-ResNet50 Hybrid vit_large_r50_s32_224
Coat Hybrid coat_lite_small

ResMLP (36) MLP resmlp_36_distilled_224
gMixer MLP gmixer_24_224

MLPMixer Large MLP mixer_b16_224
ViT (8) ViT vit_base_patch8_224
ViT (16) ViT vit_base_patch16_224
ViT (32) ViT vit_base_patch32_224

 All ImageNet models were pull from the timm package. Furthermore, all models were trained with  
similar data augmentations, and adversarial attack evaluation was done with default preprocessing  
from model.defaultcfg.

 1.2 Model Performance

Supplementary Table 3. Test Accuracy for all models trained on CIFAR-10, CIFAR100, MNIST,
FashionMNIST, SVHN.

| Test Accuracy (%)
Models FashionMNIST MNIST SVHN cifar10 cifar100
Fully Connected 86.9 92.0 26.5 39.6 15.8
Full Kernel Convolution 86.6 91.0 28.7 40.5 17.7
Locally Connected 86.4 92.0 28.5 40.7 18.3
Local Kernel Convolution 86.4 92.0 28.2 40.2 16.1
Deep Full Kernel Convolution 86.5 91.8 26.0 41.7 18.9
Deep Fully Connected 86.7 92.1 23.8 39.2 14.7
Deep Locally Connected 84.1 92.0 29.0 41.8 18.8
Deep Local Kernel Convolution 86.1 92.0 27.7 39.9 14.9
Fully Connected (ReLU) 88.4 97.2 77.6 43.6 15.4
Full Kernel Convolution (ReLU) 84.8 92.8 85.9 47.7 19.2
Locally Connected (ReLU) 87.8 95.7 82.4 53.8 22.5
Local Kernel Convolution (ReLU) 90.5 98.0 83.2 59.7 29.0
Deep Full Kernel Convolution (ReLU) 87.8 97.4 86.3 51.7 22.2
Deep Fully Connected (ReLU) 89.1 97.9 67.3 50.8 10.5
Deep Locally Connected (ReLU) 86.5 96.0 86.9 57.9 18.3
Deep Local Kernel Convolution (ReLU) 91.7 98.8 86.7 66.0 29.6
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Supplementary Table 4. Test Accuracy for all models trained on ImageNet.
model top1 top5
vit_base_patch8_224 85.794 97.794
vit_base_patch16_224 84.528 97.294
vit_large_r50_s32_224 84.424 97.166
coat_lite_small 82.304 95.848
convit_base 82.286 95.938
resmlp_36_distilled_224 81.154 95.488
vit_base_patch32_224 80.722 95.566
resnet50d 80.522 95.162
repvgg_b3 80.496 95.264
tf_efficientnet_b0_ns 78.658 94.378
gmixer_24_224 78.036 93.670
mixer_b16_224 76.612 92.228

 1.3 Training Hyperparameters

Supplementary Table 5. Learning rates for the various models considered on CIFAR-10. All
other hyper-parameters were fixed.

Model Architecture Learning Rate Batch Size Learning Rate Drop
Full Kernel Convolution .01 128 Yes

Fully Connected .01 128 Yes
Locally Connected .01 128 Yes

Full Kernel Convolution .002 128 Yes
Lokal Kernel Convolution .002 128 Yes

Supplementary Table 6. Learning rates for the various models considered on CIFAR-100. All
other hyper-parameters were fixed.

Model Architecture Learning Rate Batch Size Learning Rate Drop
Local Kernel Convolution .01 128 Yes

Fully Connected .01 128 Yes
Locally Connected .01 128 Yes

Full Kernel Convolution .002 128 Yes
Local Kernel Convolution .002 128 Yes
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Supplementary Table 7. Learning rates for the various models considered on MNIST. All other
hyper-parameters were fixed.

Model Architecture Learning Rate Batch Size Learning Rate Drop
Local Kernel Convolution .01 100 Yes

Fully Connected .01 100 Yes
Locally Connected .01 100 Yes

Full Kernel Convolution .002 100 Yes
Local Kernel Convolution .002 100 Yes

Supplementary Table 8. Learning rates for the various models considered on FashionMNIST.
All other hyper-parameters were fixed.

Model Architecture Learning Rate Batch Size Learning Rate Drop
Local Kernel Convolution .01 100 Yes

Fully Connected .01 100 Yes
Locally Connected .01 100 Yes

Full Kernel Convolution .002 100 Yes
Local Kernel Convolution .002 100 Yes

Supplementary Table 9. Learning rates for the various models considered on SVHN. All other
hyper-parameters were fixed.

Model Architecture Learning Rate Batch Size Learning Rate Drop
Local Kernel Convolution .01 128 Yes

Fully Connected .01 128 Yes
Locally Connected .01 128 Yes

Full Kernel Convolution .002 128 Yes
Local Kernel Convolution .002 128 Yes

 1.4 Adversarial Attack Configurations

Supplementary Table 10. Adversarial Attack hyperparameters for CIFAR10, SVHN, CIFAR100,
MNIST and FashionMNIST

Attack Metric Learning Rate Number of Steps Max Norm, ϵ
Projected Gradient Descent L∞ 0.1 1000 8.0/255.0
Projected Gradient Descent L2 0.1 1000 2.0
Projected Gradient Descent L1 0.1 200 0.1

Brendel-Bethge Attack L∞ 1e-03 1000 -
Brendel-Bethge Attack L2 1e-03 1000 -

 Learning Rates. All the models adversarial attacks were generated using the configuration above  
with the Foolbox package ?.

2 FORMAL PROOF OF HIGH FREQUENCY BIAS

 *
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 Proof. Let us first concentrate on a single convolutional filter wl ∈ RD. Given an arbitrary  choice of 
frequency interval Ω := {−k, . . . , 0, . . . , +k} and space interval S := {−a, . . . , 0, . . . , +a},  we want to 
prove that reducing the energy fraction in the complementary set Sc implies that we  must increase the 
energy fraction in the complementary set Ωc. The result follows from a direct  application of the 
Uncertainty Principle for finite-dimensional vector spaces, as shown e.g. in  Ghobber-Jaming ?. In 
particular let ŵ ∈ RD be the coefficients of the Discrete Fourier Transform  (DFT) of a convolutional 
filter w ∈ RD. From equation 1.2 in ? we have

∥w∥ℓ2(Sc) + ∥ŵ∥ℓ2(Ωc) ≥ ∥w∥2C(S, Ω) (1)

 where C(S, Ω) is constant when the intervals S, Ω are fixed. Dividing both sides of the inequality by  ∥w∥2 
we have

κ(Sc) + κ̂(Ωc) ≥ const

 where κ(A) := ∥w∥ℓ2(A)/∥w∥2 is the spatial energy concentration of w in the index set A and κ̂(B)  is the 
frequency energy concentration of ŵ in the set B. Thus increasing the energy concentration in  the spatial 
interval S will cause a decrease in Sc and by the inequality above an increase in κ(Ωc). If  we let Ω be an 
interval of ‘low’ frequencies, then we conclude there will be an increase in the energy 2concentration in the 
‘high’ frequencies Ωc.

 The reasoning above can be extended from a single convolutional filter to the full end-to-end  weights 
vector, β := ⋆l

L
=1
−1wl, as follows. Note first that, using the convolution theorem, the Discrete  Fourier 

transform of β is the Hadamard product of the Discrete Fourier transforms of the per-layer  weights wl i.e.

β̂ = ŵL−1 ⊙ · · · ⊙ ŵ1.

 Let us consider the energy in a set of ‘low’ frequencies Ω:

β̂Ω = ŵL−1,Ω ⊙ · · · ⊙ ŵ1,Ω.

 Taking the ℓ2 norm and invoking the inequality ∥a ⊙ b∥2 ≤ ∥a∥2∥b∥2 a total of L − 1 times we can
 then write

κ(Ω, β) ≤
L−1∏
l=1

κ(Ω, wl).

 Suppose now that, all else equal, we decrease the energy concentration in each spatial domain S of the 
per-layer filters wl. By the reasoning above this will increase the energy concentration in frequency 
domain in the interval Ωc i.e. a decrease in κ(Ω, wl) for each layer l. By the last inequality this will decrease 
κ(Ω, β), resulting in an increase in the energy concentration in the high frequencies  (Ωc) for β.

 Lemma 1. Concentrating the kernel energy in spatial domain increases the implicit regularization  
term in the optimization in [Gunasekar]:

∀a′ < a : RBW C;a′(β) ≥ RBW C;a(β)

 Proof. Reducing filter size K will increase energy in high freqs i.e. ∀K ′ < K : κhigh(β; K ′) > κhigh(β; 
K). This means that the space-limiting constraints only grow more stringent as we reduce
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 K, implying that the result of the optimization problem for the implicit regularizer will only increase in 
cost i.e. ∀K ′ < K : RBW C;K′ (β) ≥ RBW C;K(β) for any candidate linear predictor β. (Note that this does 
not refer to the learned features β∗ which actually depends on the training data as well). In summary, all 
else being equal, reducing the kernel size K causes/induces a bias towards more concentration of energy 
in higher frequencies in β.

 In summary reducing the kernel size causes/induces a bias towards more concentration of energy in higher 
frequencies in β.
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