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1 DERIVATION OF BAYES FILTER IN PROPOSED MODELS

Belief represents the conditional probability distribution of the latent variables within the model, as shown
in the following Equation( S1).

Bel(t)

≜ p(x1:t, h1:t, s1:t|o1:t, z1:t, u1:t)
∝ p(ot, zt|x1:t, h1:t, s1:t, o1:t−1, z1:t−1, u1:t)

p(x1:t, h1:t, s1:t|o1:t−1, z1:t−1, u1:t) (Bayes’ theorem)

= p(ot, zt|x1:t, h1:t, s1:t, o1:t−1, z1:t−1, u1:t)

p(xt, ht, st|x1:t−1, h1:t−1, s1:t−1, o1:t−1, z1:t−1, u1:t)

p(x1:t−1, h1:t−1, s1:t−1|o1:t−1, z1:t−1, u1:t)

= p(ot, zt|xt, ht, st)
p(xt, ht, st|xt−1, ht−1, st−1, ut) (Markov property)

p(x1:t−1, h1:t−1, s1:t−1|o1:t−1, z1:t−1, u1:t−1)

= p(ot, zt|xt, ht, st)︸ ︷︷ ︸
measurement update

p(xt, ht, st|xt−1, ht−1, st−1, ut)︸ ︷︷ ︸
control update/prediction

Bel(t− 1)

(S1)

First, Bayes’ theorem is used to factorize into the likelihood of observations at time t and prior distribution.
Then, the prior distribution is factorized into the prediction of latent variables at time t and the belief at
previous time t− 1 using the probability multiplication theorem. Finally, we considered the dependence
of the variables assumed during modeling and removed random variables with no dependence on the
conditions. In this case, since the Markov property is assumed, the behavioral model only appears as
random variables at times t and t− 1 and is in the form of a sequential equation.

A state-space model using a Bayes filter alternately updates beliefs based on input (behavior) and
output(observation). The former is called a control update or prediction, and the latter is called a
measurement update. Equation (S1) can be further expanded by considering the dependence of variables in
each model. In Model 1, measurement update is

p(ot, zt|xt, ht, st) = p(zt|xt)p(ot|st),

and the behavior update is

p(xt, ht, st|xt−1, ht−1, st−1, ut) = p(st|ht)p(xt|ht)fGRU (ht−1, st−1, xt−1)p(xt|xt−1, ut).
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Therefore, in Model 1, Equation (S1) can be rewritten as the following Equation (S2).

Bel(t)

∝ p(ot, zt|xt, ht, st)p(xt, ht, st|xt−1, ht−1, st−1, ut)Bel(t− 1)

= p(zt|xt)p(ot|st)p(st|ht)
q(st|ht,ot)

p(xt|ht)fGRU (ht−1, st−1, xt−1)p(xt|xt−1, ut)Bel(t− 1) (S2)

On the other hand, in Model 2, the measurement update is

p(ot, zt|xt, ht, st) = p(zt|xt)p(ot|ht, st),

and the behavior update is

p(xt, ht, st|xt−1, ht−1, st−1, ut) = p(st|ht)p(xt|ht, st)fGRU (ht−1, st−1)p(xt|xt−1, ut).

Therefore, in Model 2, Equation (S1) is rewritten as the following Equation (S3).

Bel(t)

∝ p(ot, zt|xt, ht, st)p(xt, ht, st|xt−1, ht−1, st−1, ut)Bel(t− 1)

= p(zt|xt)p(ot|ht, st)p(st|ht)
q(st|ht,ot)

p(xt|ht, st)fGRU (ht−1, st−1)p(xt|xt−1, ut)Bel(t− 1) (S3)

2 LATENT VARIABLE REPRESENTATION

Figure S1 shows the average firing rates for all 200 dimensions of ht. Since ht uses the activation function
tanh, it takes a value between -1 and 1. The 10 m × 12 m area of Environment 2 was divided into 0.25 m
square bins, and the latent variables at each location were inferred. The data were time-series data obtained
by exploring the environment for 186 min, which was also used for model training. As each bin was visited
multiple times, the average firing rate of ht is displayed.

3 ARCHITECTURE

The architecture of Model2 is shown in Table S1. The Image Encoder uses CNNs to obtain a 1024-
dimensional embedding vector from a 3-channel RGB image. The Image Decoder uses CNNs to generate
RGB images from latent variables. The Pose Encoder uses five layers of fully connected layers to obtain a
1024-dimensional embedding vector from 4-dimensional pose information. Note that the pose (xt, yt, θt)
is converted to (xt, yt, cos θt, sin θt) for input into the neural network. The Pose Decoder uses three fully
connected layers to obtain the mean and variance of the pose distribution approximated by a multivariate
Gaussian distribution from latent variables. A type of RNN, the GRU, was used in the transition model to
learn dynamics in the state space. Adding a dummy value of zero, due to implementation issues, which
should correspond to the dimension for the pose, makes the total 34 dimensions. The dimensions of both the
hidden layer and the input of the GRU are set to 200. Probabilistic latent variables of the input information
are first projected to 200 dimensions using a fully connected layer before being input into the GRU. FC1 is
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a model within the framework of VAEs that infers the probabilistic distribution of latent variables modeled
as a multivariate Gaussian distribution, outputting not only the mean but also the standard deviation of the
distribution.
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Figure S1. Average firing rate of ht. The value of ht has values from -1 to 1. (Top) In Model 1, all 200
cells are location-distinguishable. (Bottom) On the other hand, in Model 2, some cells have the same
value in all locations and do not change. The number of location-distinguishable cells is limited, and the
representation is sparse.
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Table S1. Model 2 architecture.

Image Encoder q(e
(o)
t |ot)

Input ot ∈ R3×256×256, Output emean
t × estd.t ∈ R2048

Conv.: 4× 4 kernel, 8 out-channel, 2× 2 stride, Batch norm 2d & ReLU
Conv.: 4× 4 kernel, 16 out-channel, 2× 2 stride, Batch norm 2d & ReLU
Conv.: 4× 4 kernel, 32 out-channel, 2× 2 stride, Batch norm 2d & ReLU
Conv.: 4× 4 kernel, 64 out-channel, 2× 2 stride, Batch norm 2d & ReLU
Conv.: 4× 4 kernel, 128 out-channel, 2× 2 stride, Batch norm 2d & ReLU
Conv.: 4× 4 kernel, 256 out-channel, 2× 2 stride, Batch norm 2d & ReLU
Reshape 1024
Full connected layer: 1024 in-features, 1024 out-features & ELU
Full connected layer: 1024 in-features, 2048 out-features

Image Decoder p(ot|ht, st)
Input ht ∈ R200, st ∈ R30, Output ot ∈ R3×256×256

Full connected layer: 30 in-features, 1024 out-features
Deconv.: 6× 6 kernel, 256 out-channel, 2× 2 stride, Batch norm 2d & ReLU
Deconv.: 4× 4 kernel, 128 out-channel, 2× 2 stride, Batch norm 2d & ReLU
Deconv.: 4× 4 kernel, 68 out-channel, 2× 2 stride, Batch norm 2d & ReLU
Deconv.: 4× 4 kernel, 32 out-channel, 2× 2 stride, Batch norm 2d & ReLU
Deconv.: 4× 4 kernel, 16 out-channel, 2× 2 stride, Batch norm 2d & ReLU
Deconv.: 6× 6 kernel, 3 out-channel, 2× 2 stride

Pose Encoder q(e
(x)
t |xt)

Input xt ∈ R4, Output emean
t × estd.t ∈ R2048

Full connected layer: 4 in-features, 1024 out-features & ELU
Full connected layer: 1024 in-features, 1024 out-features & ELU
Full connected layer: 1024 in-features, 1024 out-features & ELU
Full connected layer: 1024 in-features, 1024 out-features & ELU
Full connected layer: 1024 in-features, 2048 out-features

Pose Decoder q(xt|ht, st)
Input ht ∈ R200, st ∈ R30, Output xmean

t × xstd.t ∈ R8

Full connected layer: 230 in-features, 128 out-features & ELU
Full connected layer: 128 in-features, 128 out-features & ELU
Full connected layer: 128 in-features, 8 out-features

Transition model(GRU)
Input ht−1 ∈ R200, st−1 ∈ R30, Output ht ∈ R200

Full connected layer: 34 in-features, 200 out-features & ReLU
GRU: 200 hidden-size, 200 input-size

Posterior(FC1) p(sqt |ht, et)
Input ht ∈ R200, et ∈ R1024, Output smean

t × sstd.t ∈ R60

Full connected layer: 1224 in-features, 200 out-features & ReLU
Full connected layer: 200 in-features, 60 out-features

Prior(FC2) p(spt |ht)
Input ht ∈ R200, Output smean

t × sstd.t ∈ R60

Full connected layer: 200 in-features, 200 out-features & ReLU
Full connected layer: 200 in-features, 60 out-features
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