
 

 

Supplementary Material 
 

Simulation details 

In this work, the same parameters employed in [1] were used for the Monte Carlo simulations of the Stochastic Resistor 
Network. 

The network is structured as an undirected weighted graph, resembling a cubic lattice with Lx = 27 × Ly = 42 × Lz = 3 nodes. 
Each link in this model, representing a coarse-grained abstract of a small portion of the gold film, can exhibit one of four 
conductance values: a vanishing insulating level 𝜎𝜎𝛼𝛼 = 10−10𝛺𝛺−1 and three discrete conducting levels,  𝜎𝜎𝛽𝛽 = 0.01 𝛺𝛺−1,  𝜎𝜎𝛾𝛾 =

0.02 𝛺𝛺−1, and 𝜎𝜎𝛿𝛿 = 0.04 𝛺𝛺−1. The initial coverage is random and beyond percolation threshold. Similar to the experiments, 
the simulated network is subjected to a constant overall applied voltage 𝛥𝛥𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡.   At each MC step, we utilize the Spectral Theory 
of Laplacian Matrix, as described in [2, 3], to solve the network’s circuit and determine the effective resistance 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 and voltage 
𝛥𝛥𝑉𝑉𝑖𝑖𝑖𝑖 across node pairs {𝑖𝑖, 𝑗𝑗}. This method resembles traditional Circuit Theory nodal analysis but extends the basic Kirchhoff 
equation calculations, offering an efficient approach to manage current redistribution in large systems. Following this approach, 
at each step, we compute the Laplacian matrix 𝐿𝐿 associated with the network. Subsequently, we derive 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡  by computing the 
Moore-Penrose pseudo-inverse 𝐿𝐿+. We then use Ohm's Law to compute the total current 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡. Individual link voltages 𝛥𝛥𝑉𝑉𝑖𝑖𝑖𝑖  are 
then determined via nodal potential methods, which rely on the total computed current and the spectral decomposition of 𝐿𝐿. 
After this computation, we proceed to probabilistically update each link conductance 𝜎𝜎{𝑖𝑖𝑖𝑖}. Each link conductance 𝜎𝜎{𝑖𝑖𝑖𝑖}is 

probabilistically updated depending on 1) its dissipated power 𝑊𝑊𝑖𝑖𝑖𝑖
(𝑑𝑑) =  

𝛥𝛥 𝑉𝑉𝑖𝑖𝑖𝑖2

𝑅𝑅𝑖𝑖𝑖𝑖
(this may decrease  𝜎𝜎{𝑖𝑖𝑖𝑖}) and 2) the power 

dissipated by its neighbors 𝑊𝑊𝑖𝑖𝑖𝑖
(𝑎𝑎)~ 

𝛴𝛴𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ(𝑘𝑘𝑘𝑘) 𝛥𝛥 𝑉𝑉𝑘𝑘𝑘𝑘2

𝑅𝑅𝑘𝑘𝑘𝑘
 (this may increase  𝜎𝜎{𝑖𝑖𝑖𝑖}). Moreover, each 𝛥𝛥𝑉𝑉𝑖𝑖𝑖𝑖 is compared with a 

threshold voltage, which determines whether a downgrade/upgrade of 𝜎𝜎𝑖𝑖𝑖𝑖 has to be attempted.  

The model was implemented in C++ language (http://www.cplusplus.com/reference/). High-Performance Computing (HPC) 
resources were needed, due to the matrix size (approximately N × N ≈ 107 elements) and simulations spanning thousands of 
MC steps. We utilized the Armadillo library in C++ (https://arma.sourceforge.net/) for matrix calculations, leveraging its built-
in parallelization with OpenMP to efficiently perform Spectral Theory computations. 

To analyze the results of the simulations, we used tools from the NetworkX package [8] and custom Python libraries. 

Receptron Setup 

The network shown in Fig. 1b has three specialized nodes called electrode-nodes (ENs) whose connections to the source and 
the network are designed to mimic the experimental multi-electrode setup (see 1, 2, and 3 in Fig. S1).  

http://www.cplusplus.com/reference/
https://arma.sourceforge.net/
about:blank


Figure S1: Network depiction. Specialized nodes and links are illustrated here. 

These electrodes are connected to the left side of the lower layer by three separate groups of a few permanent-conductance 
links called electrode-links (ELs). The conductance of the input-ELs is set to 𝜎𝜎𝐸𝐸𝐸𝐸

(𝑖𝑖𝑖𝑖) = 𝜎𝜎𝛿𝛿 / 𝜎𝜎𝐸𝐸𝐸𝐸
(𝑖𝑖𝑖𝑖) = 𝜎𝜎𝛼𝛼 when the input-SL is 

closed/open. The groups of ELs are spaced apart from each other and are intended to mimic three electrodes. Each of them can 
be connected to the source node through its own input-EN via a permanent switch-link (SL), which acts as a closed (or open) 
switch that connects (or disconnects) the device to the current generator. The conductance of the input-SLs depends on the 
desired electrode configuration: 𝜎𝜎𝑆𝑆𝑆𝑆

(𝑖𝑖𝑖𝑖) = 200𝛺𝛺−1 and 𝜎𝜎𝑆𝑆𝑆𝑆
(𝑖𝑖𝑖𝑖) = 𝜎𝜎𝛼𝛼, representing respectively a closed or an open switch. The 

input electrodes can be connected or disconnected from the source according to the desired configuration, which is represented 
using a binary notation: a value of 0/1 indicates an open/closed switch. In configurations involving the passage of current 
through more than one electrode, two connections - whose conductance is set to 𝜎𝜎1,2 = 𝜎𝜎2,3 = 103𝛺𝛺−1 to minimize the voltage 
difference at their ends - are added between two input-ENs to ensure the same amount of current can flow through all input 
channels. A similar setup is used to represent two output electrodes using two separate groups of permanent ELs that connect 
the right side of the lower layer to the corresponding output-EN (nodes A and C in Fig. S1). The output-ENs are linked to node 
N−1 (the sink through which current exits the system) via two SLs with fixed 𝜎𝜎 = 100𝛺𝛺−1.  

Reprogramming/computing procedures 

During the reprogramming, a voltage above a certain threshold is applied, triggering local updates of the link weights [4] and 
producing new values of the output Vout during the subsequent reading phase. By exploiting the topological reorganization 
induced by the reprogramming, each of which lasts 90 MC steps, different output values can be explored (as shown in Fig.1b). 
The range of applied voltages spans ∆V ∈ [3 V, 45 V]. During the reading phase, the output of the device is measured 
sequentially for all input configurations and is averaged under the influence of a voltage of 1 V for 3 Monte Carlo steps. 

The reprogramming voltage threshold is operationally defined as the electrical potential required to trigger resistive switching 
[5-7]. At the same threshold (𝑉𝑉𝑡𝑡ℎ = 3𝑉𝑉), a dramatic change in slope is also observed in the I(V) curve (see [1] for details). 



 

Figure S2 Protocol of sequential simulations, each lasting 1000 MC steps and starting from the same networks configuration. 
The simulation of the sequence differ for the magnitude of costant 𝛥𝛥𝑉𝑉delivered to the system. The MC moves of the algorithm 

of simulation are here considered separately (labelled with 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎, 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and NL)  and cumulatively (labelled with 𝑡𝑡𝑡𝑡𝑡𝑡). 
Simulations are labelled with the magnitude of costant voltage delivered (x-axis). (Left panel) curves of accepted moves, 
(Central panel) curves of attempted moves, (Right panel) acceptance probabilities of the MC moves as function of the 

costant voltage applied during the simulation.  

Similar behavior is also observed in the curves of MC move acceptance probabilities as the potential difference applied to the 
network changes. Fig. S2 shows the trends in the number of link updates (MC moves accepted) (left panel) over the number 
of MC moves attempted (central panel) for simulations of 1000 MC steps under a fixed potential difference. The four curves 
in each plot show respectively the count of acceptances/attempts due to the total number of moves, the absorbed power (𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎) 
and the dissipated power (𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) moves, and nonlinear (NL) moves. As shown, below 1V the moves related to heat dissipation 
cannot be effective, while the nonlinear move is. At 1V all moves are active; for the network size utilized in this study, 
comprising approximately 9000 links, it's worth noting that a single link undergoes modification every two Monte Carlo steps 
within this regime (see total acceptance rate curve in Fig. S2-right panel). For potentials above 1V the acceptance rate of the 
total moves (Fig. S2-right panel) rises dramatically leading to frequent rearrangement of conductive links within the network. 
It is therefore reasonable to assume that at 1V there are insufficient changes to reconfigure the network: this is akin to the 
experimental computing regime. We instead assume that the number of accepted moves from 3V onward is sufficient to 
induce structural changes in the network, as observed for the reprogramming in the experimental system. 

Markovianity Assumption 

The receptron weights can be altered due to reprogramming, which physically consist of high voltage pulses that redistribute 
current pathways in the resistive medium. We restrict our investigation to the magnitude, polarity, and localization of the 
voltage stimulus applied: 

𝑟𝑟 = (𝛥𝛥𝛥𝛥, ±, 𝑙𝑙) 

as control parameters that shape the evolution of the receptron weighting of inputs. Additional parameters that may be 
considered are the length of the reprogramming pulse or a more complicated pulse train stimulation, which goes beyond the 
scope of the present work.  

As formalized in section 2.3, depending on the actual internal resistive state c(t) of the system and the features of the 
reprogramming (summarized by r), a series of reprogramming phases with specific properties will induce a series of 
transitions between internal configurations.  



Figure S3 Experimental protocol.  (a) 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) curves, for 𝑙𝑙 fixed. Protocol of 150 alternated reprogramming and computation 
phases.  (b) Autocorrelation function of  𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) for 𝑙𝑙 fixed. (c)  Characteristic autocorrelation time for each  𝑙𝑙 . 

Consequently, in the most general case, the output functions will follow a certain probability distribution  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 which depends 
on all previous internal configurations:  

𝑓𝑓𝑛𝑛 ∈ 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜(𝑅𝑅, {𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑛𝑛−1})                                                                    

where 𝑅𝑅 = {𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑛𝑛}  collects all the characteristics of the sequence of reprogrammings performed on the receptron 
implementation and {𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑛𝑛−1} represent all the past output functions computed. 
 
We have verified the extent to which the system memorizes the history of applied stimuli with the usual protocol involving 
alternating cycles of reprogramming and output computation and computing the autocorrelation of each analog output,  being 
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = {𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡 = 1), 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡 = 2), . . . , 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡 = 𝑛𝑛)} the analog outputs of the computation sequence.  

We apply this protocol to both the experimental and simulated receptrons. For the experimental realization of the protocol,    
∆V ∈ [−35 𝑉𝑉,−15𝑉𝑉 ] 𝑈𝑈 [15 𝑉𝑉, 35𝑉𝑉] , ±∈ {+,−} and 𝑙𝑙 = {0,1}  × {0,1}  × {0,1} , with reprogramming lasting 1 sec, while for 
simulated protocol ∆V ∈ [−35 𝑉𝑉,−25𝑉𝑉 ] 𝑈𝑈 [25 𝑉𝑉, 35𝑉𝑉] , ±∈ {+} and 𝑙𝑙 = {0,1}  × {0,1}  × {0,1} , with reprogramming lasting 
90 MC steps. Figure S3-a and Figure S2-a show the sequence  𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜  for a protocol 150 reprogrammings, respectively for 
experimental and simulated realizations. The 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 curves are plotted for each parameter 𝑙𝑙 composition. 

To examine the system's memory of previous stimuli we analyze the autocorrelation function of each output for a given stimulus 
(Figure S3-b and Figure S4-b) and we compute the characteristic time 𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅∗  (Figure S3-c and Figure S4-c).  

 



Figure S4  Simulated protocol. (a) 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) curves, for 𝑙𝑙 fixed. Protocol of 150 alternated reprogramming and computation phases.  
(b) Autocorrelation function of 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) for 𝑙𝑙 fixed. (c) Characteristic autocorrelation time for each  𝑙𝑙 . 

 

Results show short memory retention of the last reprogrammings both for experimental (𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅∗  between 2 and 4 reprogramming 
steps) and simulated (𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅∗  between 1 and 2 reprogramming steps) cases. 𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅∗  is calculated as the time at which the 
autocorrelation reaches a value smaller than 1/e for the first time. 

It is therefore reasonable to limit the 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 dependency to 𝑟𝑟 and 𝑓𝑓𝑛𝑛−1 , discarding the terms referred to inputs that were further 
back. In other words, we assume that the output functions follow a certain probability distribution  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜: 

𝑓𝑓𝑛𝑛 ∈ 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟𝑛𝑛, 𝑓𝑓𝑛𝑛−1)                                                                        

with the assumption of Markovianity in first approximation. 

 

 

 

 

 

 



  

 

 

MI and II Calculation in the SRN Model 

The data in Fig. 3b have been obtained with a simulation which followed a different protocol. To compute Mutual 
and Integrated Information, which are entropy-based measurements, one needs a probability distribution, and thus a 
definition of what is a ‘state’. Therefore, we simulated at 1V a virgin network for 104 steps, taking the first 6 × 103 
as equilibration and then using the last 4 × 103, split into 2 windows (made of 3000 MC steps each), with a stride of 
1000 steps. After a reprogramming phase (long as well 104 steps, with r = (15 V, +, 100)), another reading at 1V 
was performed for 104 MC steps. To monitor the immediate effects of reprogramming, only the initial 4 × 103 steps 
have been included in the analysis, with the same window size and stride of the pre-reprogramming phase.  

For the calculation of MI and II, we use a coarse-graining procedure by dividing the network into seven 
parallelepipeds. For each Monte Carlo step, the conductance value of each coarse-grained area is given by averaging 
the links belonging to the edges of the relevant parallelepiped. The choice to average only the edges is because only 
the conductivity of the edges is responsible for the passage of current between one zone and another. Formally, the 
links that constitute these boundaries are those that share at least one node with the links of neighboring areas. Since 
we are interested in understanding how the sub-regions of the SRN communicate with each other by exchanging 
information, we only included in the computation of the average σ only the boundary of each sub-region. Formally, 
the links that constitute these boundaries are those that share at least one node with the links of neighboring areas. 
This implies discarding all the internal links of each zone, if they only marginally contribute to the information 
exchange process. We expect that within each 3D zone there is always at least a conductive path which connects a 
region with the rest of the system through its interfaces.  

In Fig. 3b, we have chosen the (100) configuration since we expect it to induce more marked changes with respect, 
e.g., to (010), since the current tends to flow close to one of the borders of the layer, thus making its effects more 
detectable. For each spatial region, the time series of the average conductance in that zone was used to build a 
histogram, with 1000 bins. The two histograms (of 6000 entries each) were then discretized, using deciles to obtain 
10 distinct conductive states. The probability of such states was then computed, used to build the entropy H and from 
it the MI and II were obtained for each region.  
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