
Table S 1: Overview of some ecological characteristics, invasive potential and cultivation in Central Europe of the nine non-native tree species included in this study
	Species
	Ecological characteristics [1]
	Invasive potential [2]
	Cultivation in Central Europe [3]
	Source

	Abies grandis,
(Canada, USA) 
	Shade tolerant, thrives in a variety of soils, rarely occurs in pure stands
	Unlikely at present
	frequently cultivated Particularly suitable as a mixed species and as a stabilising species on both wetter and drier sites
	([1] Foiles et al., 1990; [1, 3] Ruetz, 2014; [2] Spellmann et al., 2015)

	Fraxinus pennsylvanica,
(Canada, USA)
	Occurs as a pioneer and climax species, large ecological amplitude
	Reported as (potential) invasive
	cultivated in hardwood floodplain forests
	([1, 3] Schmiedel, 2007; [2] Drescher and Prots, 2016)

	Juglans nigra,
(Canada, USA)  
	Large ecological amplitude, fast-growing, competitive, shade-intolerant species, allelopathy
	Can affect native biodiversity
	frequently cultivated in hardwood floodplain forests
	([1] Rietveld, 1983; [2] Nicolescu et al., 2020; [1, 3] Schaarschmidt, 2004)

	Pinus contorta,
(Canada, USA, Mexico)
	Pioneer species, tap root system, more competitive as P sylvestris
	Reported as invasive
	Widely used in Scandinavia, the UK and Ireland as an alternative for Scots pine and spruce
	([1] Engelmark et al., 2001; [2] Davis et al., 2019; [1, 3] Stephan, 2014)

	Pinus radiata,
(USA)
	Shade intolerant, shallow root system, fast growth
	Reported as potential invasive (eg Australia, New Zealand and Chile)
	World's most planted pine
	([1] Watson and O’loughlin, 1990; [2] Lindenmayer and McCarthy, 2001; Williams and Wardle, 2007; [1, 3] McDonald and Laacke, 1990)

	Pseudotsuga menziesii,
(Canada, USA), Mexico)
	Grows in a wide range of climatic conditions, heart fibrous root system, high tolerance to soil conditions
	Invasiveness only known for specific habitats
	Very common in a wide range of habitats
	([2] Bauhus et al., 2017; Bindewald and Michiels, 2016; [1, 3] Hermann, 2014)

	Quercus rubra,
(Canada, USA)
	Pioneer behaviour in extreme sites, tap root system, comparable environmental needs as native oaks
	reported as potential invasive
	Cultivated in Europe since 1691, well established
	([1] Marinšek et al., 2022; [1, 3] Brauer, 2015; [2] Dreßel and Jäger, 2002; Vor et al., 2015)

	Robinia pseudoacacia
(Canada, USA)  
	Very competitive and can alter soil chemistry, shade intolerant
	reported as invasive
	One of the most cultivated trees worldwide, in Europe since the 16th century
	([1] Huntley, 1990; [2] Essl and Rabitsch, 2002; [1,3] Schütt, 2014; [3] Marinšek et al., 2022)

	Thuja plicata
(Canada, USA)
	Adapted to a wide range of habitats, shallow root system, prefers semi-shade
	reported as (potential) invasive
	one of the best performing non-native tree species in trial forest plantations in Central and Western Europe
	([1] Antos et al., 2016; [2] Fanal et al., 2021; Richardson and Rejmánek, 2004; [1, 3] Wickler, 2014)



Table S2: Bioclimatic variables used to calibrate the SDMs obtained from WorldclimV2 (Fick and Hijmans, 2017)
	Acronym
	Variable

	BIO1 
	Annual Mean Temperature

	BIO2 
	Mean Diurnal Range (Mean of monthly (max temp - min temp))

	BIO3 
	Isothermality (BIO2/BIO7) (×100)

	BIO4 
	Temperature Seasonality (standard deviation ×100)

	BIO5 
	Max Temperature of Warmest Month

	BIO6 
	Min Temperature of Coldest Month

	BIO7 
	Temperature Annual Range (BIO5-BIO6)

	BIO8 
	Mean Temperature of Wettest Quarter

	BIO9 
	Mean Temperature of Driest Quarter

	BIO10 
	Mean Temperature of Warmest Quarter

	BIO11 
	Mean Temperature of Coldest Quarter

	BIO12 
	Annual Precipitation

	BIO13 
	Precipitation of Wettest Month

	BIO14 
	Precipitation of Driest Month

	BIO15 
	Precipitation Seasonality (Coefficient of Variation)

	BIO16 
	Precipitation of Wettest Quarter

	BIO17 
	Precipitation of Driest Quarter

	BIO18 
	Precipitation of Warmest Quarter

	BIO19 
	Precipitation of Coldest Quarter



Table S3.  Description of the SDMs used to develop the potential distribution of the NNTs according to the ODMAP protocol (Zurell et al., 2020).
	ODMAP elements
	Contents

	OVERVIEW

	Model objective
	SDM Objective: forecast/transfer
Target output: probability of occurrence of target tree species

	Taxon
	Nine Non-native tree species of Europe: (see Table S1)

	Location
	Europe

	Scale of analysis
	Spatial extent (Lon/ Lat):
Longitude: -32.65000 °E -69.44167 °E
Latitude: 30.877982 °N -71.57893 °N

Spatial resolution: 30 arcsec

Temporal resolution: We modelled for historic climate (1961-90) and three future time frames which include averages of (2041-2060, 2061-2080, and 2081-2100). The predictions were done for two Representative Concentration RCP 4.5 and RCP 8.5

	Biodiversity data overview
	Observation type: standardized monitoring
Response data type: presence/absence data


	Type of predictors
	Climatic

	Conceptual model/hypotheses
	A large body of scientific studies indicate that climate is one of the major drivers of the distribution of tree species at the continental scale. We exploited this correlation between species' current occurrence and climate to develop SDMs that predict the potential distribution of the target tree species.

	Assumptions
	We assumed that species are at pseudo-equilibrium with the environment. The source of the presence/absence data used in this study is largely from national forest inventories where tree individuals below a certain diameter at breast height are not recorded. We assume that this data collection procedure did not bias our occurrence data. 
Since our occurrence dataset covers both the native and introduced range of the target species, which represents both the current and likely future climate of Europe, we assumed that the species retain their niches across space and time and the current occurrence-climate correlation remains stable when predicting the models for future climate.


	SDM algorithms
	Algorithms: We selected 10 modeling algorithms: GLM (Generalized Linear Models), GAM (Generalized Additive Models), GBM (Generalized Boosted regression Models), CTA (Classification Tree Analysis), ANN (Artificial Neural Networks), SRE (Surface Range Envelop or BIOCLIM), FDA (Flexible Discriminant Analysis), MARS (Multivariate Adaptive Regression Spline), RF (Random Forest for classification and regression), and MAXENT. Tsuruoka. These model algorithms were implemented through an ensemble model platform  biomod2 (Thuiller et al., 2013).

Model complexity: The individual models were run using the standard default settings of biomod2, which are designed to balance model complexity and overfitting. See further details in the section “Model” detailed below.

Ensembles: The prediction of individual model algorithms were ensembled through biomod2 (Thuiller et al. 2013). See further details in the section “Model” detailed below.


	Model workflow
	The model workflow includes:
1. Data cleaning and presence-pseudoabsence generation 
2. Variable selection
3. Model calibration 
4. Ensemble prediction


	Software
	Software: All analyses were conducted using R version 3.3.2 (R Core Team, 2016). Packages used: biomod2 (Thuiller et al. 2013), Random Forest (Breiman, 2001).

Climate data is available from 
WorldClimV2.0 (Fick and Hijmans 2017)


	DATA

	Biodiversity data
	Taxon names: (See Table S1)

Ecological level: Species-level

Data source& sampling design
Occurrence data (presence locations) of the target tree species in their native and introduced range in Europe was obtained from various sources such as National Forest Inventories, Global biodiversity facilities, private collection, and contributions from participating institutions in the EU COST Action NNEXT  (FP1403 - Non-native tree species for European forests - experiences, risks and opportunities). The sampling design varied in each of the data sources which were later harmonized through a data thinning approach (see Data filtering)

Sample size.
The dataset includes a total of 754, 413 occurrence records of the target species (i.e. presence locations). 

Data filtering: 

Pseudoabsence generation
For each species, we randomly selected 10,000 background points (Barbet‐Massin et al., 2012) using a 30-arc sec raster corresponding to the spatial resolution of the bioclimatic variables of worldclim2.0. This constituted the presence-pseudoabsence dataset.

Data thinning and reducing spatial autocorrelation.
The presence-pseudoabsence dataset was further thinned to reduce spatial autocorrelation by retaining only one occurrence (either presence or pseudoabsence) within each 30-arc sec raster cell of the bioclimatic variables from worldclim2.0. 

After thinning, 734,076 presence records and 87700 pseudoabsences were retained for calibrating the SDMs with biomod2.

Species occurrence data: 
This approach was used to generate pseudoabsence for all seven species. 

	Species
	Presence
	Pseudoabsence
	Total

	Abies grandis
	74852
	9500
	84352

	Fraxinus pennsylvanica
	155693
	9500
	165193

	Juglans nigra
	55627
	9900
	65527

	Pinus contorta
	312066
	9800
	321866

	Pinus radiata
	5858
	9900
	15758

	Pseudotsuga menziesii
	23900
	9700
	33600

	Quercus rubra
	35328
	9800
	45128

	Robinia pseudoacacia
	69665
	9700
	79365

	Thuja plicata
	1086
	9900
	10986

	Total
	734076
	87700
	821776





	Data partitioning
	The occurrence dataset for each target species was partitioned by splitting into 75% for model training and 25% for model evaluation.


	Environmental predictors
	Predictor variables
Environmental predictors were 19 biologically relevant climate variables comprising annual, seasonal, and monthly variables from Worldclim2.0(Fick and Hijmans 2017). See Table S2 in Supporting Information

From this list of 19 variables, a small subset of potential predictor variables was selected for each target species during the variable selection process. 

Data sources: 
The spatial resolution of predictor data: 30 arcsec which is roughly equivalent to 1x1km or lower depending on latitude.

The temporal resolution of predictor variable: Historic climate (1961-90) and three future time frames which include averages of (2041-2060, 2061-2080, and 2081-2100) for two future scenarios ssp245 and ssp585 which is equivalent to Representative Concentration Pathway scenarios RCP 4.5 and RCP 8.5 respectively. Future bioclimatic variables represent the mean of the 13 GMs presented in Worldclim2.0. 

Geographic projection: WGS 84 (EPSG: 4326)


	Model

	Variable selection and Multicollinearity
	From the list of potential predictor variables (Table S2), the ones that explain most of the variation in the observed presence and absences of each species were selected with a recursive feature elimination approach (RFE) implemented within the Random forest algorithm (Breiman 2001b). Within the RFE approach, the variables were eliminated iteratively, starting from the full set of potential predictors (Table S2), and retaining only those variables that reduce the mean square error over random permutations of the same variable. The variables which were linearly correlated with other variables and had variance inflation factors VIF > 5 as suggested by (Booth et al., 1994)Click or tap here to enter text. were identified and the ones with the lower value according to the Akaike Information Criteria (AIC) (Akaike, 1974)Click or tap here to enter text. were retained for further model development. 


This subset of bioclimatic climate variables was used as predictor variables for developing the ensemble species distribution models. 
	Species
	Variable
	Rank

	Abies grandis
	bio4
	1

	Abies grandis
	bio7
	2

	Abies grandis
	bio10
	3

	Abies grandis
	bio19
	4

	Juglans nigra
	bio12
	1

	Juglans nigra
	bio19
	2

	Juglans nigra
	bio10
	3

	Pinus contorta
	bio10
	1

	Pinus contorta
	bio19
	2

	Pinus contorta
	bio11
	3

	Pinus contorta
	bio12
	4

	Pseudotsuga menziesii
	bio4
	1

	Pseudotsuga menziesii
	bio10
	2

	Pseudotsuga menziesii
	bio3
	3

	Pseudotsuga menziesii
	bio5
	4

	Pinus radiata
	bio4
	1

	Pinus radiata
	bio11
	2

	Pinus radiata
	bio12
	3

	Pinus radiata
	bio1
	4

	Quercus rubra
	bio4
	1

	Quercus rubra
	bio1
	2

	Quercus rubra
	bio10
	3

	Quercus rubra
	bio7
	4

	Robinia pseudoacacia
	bio4
	1

	Robinia pseudoacacia
	bio10
	2

	Robinia pseudoacacia
	bio17
	3

	Robinia pseudoacacia
	bio5
	4

	Thuja plicata
	bio4
	1

	Thuja plicata
	bio1
	2

	Thuja plicata
	bio7
	3

	Thuja plicata
	bio11
	4

	Thuja plicata
	bio6
	5

	Fraxinus pennsylvanica
	bio4
	1

	Fraxinus pennsylvanica
	bio16
	2

	Fraxinus pennsylvanica
	bio8
	3

	Fraxinus pennsylvanica
	bio1
	4

	Fraxinus pennsylvanica
	bio7
	5





	Model settings
	
The models were run with the following settings of biomod2  as listed below 

Parameters for model calibration
i. models	= all models in biomod2 were used such as GLM, GBM, GAM, CTA, ANN, SRE, FDA, MARS, RF, and MAXENT.Tsuruoka, 

ii. CV.strateg = cross-validation selection strategy was  set to random with 10 repetitions

iii. CV.nb.rep = 10 repetitions

iv. CV.perc	= 0.75 (25% for model evaluation only). For model calibration full dataset was used

v. prevalence = 0.5, presences and absences will be weighted equally 

vi. metric.eval = Model evaluation metric TSS

Parameter settings for individual model algorithms

Generalised linear models (GLMs): GLMs were generated assuming a logistic link function and a binomial error distribution of the response variable without interactions.

Generalised Boosted Models (GBMs): GBMs were fitted with distribution = 'bernoulli' and a maximum of 25000 trees fitted to the data and with an interaction depth of 4

Generalised additive models (GAMs): GAMs were generated with default parameter in biomod2  with k (default 4): a smooth term cubic-smooth splines bounded by a degree of smoothness of four for each climatic predictor and family (binomial(link = 'logit')) 

Classification tree analysis (CTA): CTA was carried out using  method = 'class' for presence-absence data,  parms = 'default',  and 10 fold cross validation

Artificial neural networks (ANNs) with the following parameters
i. NbCV (default 5): nb of cross-validation to find best size and decay parameters;
ii. size (default NULL): number of units in the hidden layer; 
iii. decay (default NULL): decay parameter will be optimized by cross-validation on model AUC i.e.. NbCv 
iv. rang (default 0.1) 
v. maxit (default 200): maximum number of iterations.

Surface range envelopes (SREs): quant (default 0.025): quantile of 'extreme environmental variable' removed for selection of species envelops

Multivariate adaptive regression splines (MARS): MARS were fitted with default 0-level interactions between predictors.

Random Forests (RFs): The number of trees grown were set to 500 with mtry (default 'default'), nodesize (default 5) and maxnodes (default NULL)

MAXENT.Tsuruoka (Maxent) was used with the following default parameters in biomdo2
i. l1_regularizer (default 0.0): A numeric turning on L1 regularization and setting the regularization parameter. A value of 0 will disable L1 regularization
ii. l2_regularizer (default 0.0): A numeric turning on L2 regularization and setting the regularization parameter. A value of 0 will disable L2 regularization
iii. use_sgd (default FALSE): A logical indication that SGD parameter estimation should be used. Defaults to FALSE
iv. set_heldout (default 0): An integer specifying the number of documents to hold out. Sets a held-out subset of your data to test against and prevent overfitting 
v. verbose (default FALSE): A logical specifying whether to provide descriptive output about the training process


	Model estimates
	The models estimated the median ensemble probability of species occurrence.

	Model ensemble
	
Predicted probabilities from the individual models for each target species were ensembled as a consensus model which combined the median probability over the selected models with the True Skill Statistics threshold (TSS > 0.7) (Allouche et al., 2006; Coetzee et al., 2009)Click or tap here to enter text.. 


Parameters for model ensemble
i. em.by= all ie. all models are combined into one ensemble
ii. metric. select =a vector containing evaluation metric names ( TSS)  to be used together with metric.
iii. select. thresh = 0.7 for TSS 
Ensemble-models algorithms or the algorithms used  for the ensemble were:

i. EMmean : Mean of probabilities over the selected models. 
ii. EMmedian : Median of probabilities over the selected models. The median is less sensitive to outliers than the mean
iii. EMcv : Coefficient of variation (sd/mean) of probabilities over the selected models. CV is a measure of uncertainty rather than a measure of the probability of occurrence. If the CV gets a high evaluation score, it means that the uncertainty is high where the species is observed


	Threshold selection
	and True Skill Statistics threshold (TSS > 0.7), a commonly used threshold for SDMs (Coetzee et al. 2009; Allouche, Tsoar, and Kadmon 2006) was used. 

	Assessment

	Model performance statistics 
	For each such model run as well as the final ensemble models for each target species, the model evaluation statistics were recorded. These statistics were true skill statistics (TSS), model sensitivity (the ability of the model to predict true presences), and model specificity (the ability of the model to predict the true absences). TSS takes into account both omission and commission errors and ranges also from −1 to +1, not being affected by prevalence as KAPPA (Allouche, Tsoar, and Kadmon 2006). TSS values ranging from 0.2 to 0.5 were considered poor, from 0.6 to 0.8 useful, and values larger than 0.8 were good to excellent (Coetzee et al. 2009). 

Statistics for evaluation for each of the models used to develop the ensemble SDM for the seven tree species. MAXENT 
	Species
	Criteria
	Testing.data
	Sensitivity
	Specificity
	Model

	Abies grandis
	TSS
	1.0
	99.3
	99.7
	GLM

	Abies grandis
	TSS
	1.0
	99.1
	98.6
	GAM

	Abies grandis
	TSS
	1.0
	98.9
	98.5
	GBM

	Abies grandis
	TSS
	1.0
	98.6
	98.6
	CTA

	Abies grandis
	TSS
	0.9
	98.4
	95.1
	ANN

	Abies grandis
	TSS
	1.0
	99.9
	100.0
	RF

	Abies grandis
	TSS
	1.0
	99.0
	98.9
	FDA

	Abies grandis
	TSS
	1.0
	98.2
	98.6
	MARS

	Abies grandis
	TSS
	1.0
	98.0
	97.0
	Maxent

	Fraxinus pennsylvanica
	TSS
	1.0
	99.0
	99.5
	GLM

	Fraxinus pennsylvanica
	TSS
	1.0
	98.2
	98.6
	GAM

	Fraxinus pennsylvanica
	TSS
	1.0
	98.8
	99.1
	GBM

	Fraxinus pennsylvanica
	TSS
	1.0
	98.6
	99.0
	CTA

	Fraxinus pennsylvanica
	TSS
	0.9
	93.5
	98.2
	ANN

	Fraxinus pennsylvanica
	TSS
	1.0
	100.0
	100.0
	RF

	Fraxinus pennsylvanica
	TSS
	1.0
	98.7
	99.3
	FDA

	Fraxinus pennsylvanica
	TSS
	1.0
	99.1
	99.1
	MARS

	Fraxinus pennsylvanica
	TSS
	0.9
	95.3
	98.0
	MAXENT

	Juglans nigra
	TSS
	1.0
	99.3
	98.7
	GLM

	Juglans nigra
	TSS
	1.0
	98.4
	99.3
	GAM

	Juglans nigra
	TSS
	1.0
	99.4
	99.9
	GBM

	Juglans nigra
	TSS
	1.0
	99.2
	99.6
	CTA

	Juglans nigra
	TSS
	0.9
	92.2
	93.7
	ANN

	Juglans nigra
	TSS
	1.0
	100.0
	100.0
	RF

	Juglans nigra
	TSS
	1.0
	100.0
	95.6
	FDA

	Juglans nigra
	TSS
	1.0
	98.7
	98.6
	MARS

	Juglans nigra
	TSS
	1.0
	98.7
	96.7
	MAXENT

	Pinus contorta
	TSS
	1.0
	98.5
	99.0
	GLM

	Pinus contorta
	TSS
	1.0
	98.2
	97.9
	GAM

	Pinus contorta
	TSS
	1.0
	97.9
	98.5
	GBM

	Pinus contorta
	TSS
	1.0
	98.5
	98.1
	CTA

	Pinus contorta
	TSS
	1.0
	100.0
	100.0
	RF

	Pinus contorta
	TSS
	1.0
	98.5
	99.0
	FDA

	Pinus contorta
	TSS
	1.0
	98.9
	99.0
	MARS

	Pinus contorta
	TSS
	0.8
	88.3
	93.2
	MAXENT

	Pseudotsuga menziesii
	TSS
	1.0
	99.1
	98.7
	GLM

	Pseudotsuga menziesii
	TSS
	1.0
	98.2
	98.5
	GAM

	Pseudotsuga menziesii
	TSS
	1.0
	98.8
	98.9
	GBM

	Pseudotsuga menziesii
	TSS
	1.0
	98.2
	99.3
	CTA

	Pseudotsuga menziesii
	TSS
	0.9
	97.7
	96.9
	ANN

	Pseudotsuga menziesii
	TSS
	1.0
	100.0
	100.0
	RF

	Pseudotsuga menziesii
	TSS
	1.0
	98.4
	98.8
	MARS

	Pseudotsuga menziesii
	TSS
	0.9
	97.0
	97.0
	MAXENT

	Pinus radiata
	TSS
	1.0
	99.2
	96.7
	GLM

	Pinus radiata
	TSS
	1.0
	99.3
	99.7
	GAM

	Pinus radiata
	TSS
	1.0
	99.9
	99.6
	GBM

	Pinus radiata
	TSS
	1.0
	99.7
	98.0
	CTA

	Pinus radiata
	TSS
	1.0
	99.7
	99.1
	ANN

	Pinus radiata
	TSS
	1.0
	100.0
	100.0
	RF

	Pinus radiata
	TSS
	1.0
	99.9
	98.7
	FDA

	Pinus radiata
	TSS
	1.0
	100.0
	100.0
	MARS

	Pinus radiata
	TSS
	1.0
	99.0
	98.6
	MAXENT

	Quercus rubra
	TSS
	1.0
	99.3
	99.5
	GLM

	Quercus rubra
	TSS
	1.0
	98.2
	99.4
	GAM

	Quercus rubra
	TSS
	1.0
	98.7
	99.0
	GBM

	Quercus rubra
	TSS
	1.0
	98.3
	99.4
	CTA

	Quercus rubra
	TSS
	1.0
	97.7
	97.6
	ANN

	Quercus rubra
	TSS
	1.0
	100.0
	100.0
	RF

	Quercus rubra
	TSS
	1.0
	99.2
	98.2
	FDA

	Quercus rubra
	TSS
	1.0
	98.7
	98.6
	MARS

	Quercus rubra
	TSS
	0.9
	97.1
	97.3
	MAXENT

	Robinia pseudoacacia
	TSS
	1.0
	98.3
	98.9
	GLM

	Robinia pseudoacacia
	TSS
	0.9
	97.2
	97.4
	GAM

	Robinia pseudoacacia
	TSS
	1.0
	98.3
	97.9
	GBM

	Robinia pseudoacacia
	TSS
	1.0
	97.8
	97.7
	CTA

	Robinia pseudoacacia
	TSS
	0.9
	97.8
	90.5
	ANN

	Robinia pseudoacacia
	TSS
	1.0
	100.0
	100.0
	RF

	Robinia pseudoacacia
	TSS
	0.9
	97.4
	97.3
	MARS

	Robinia pseudoacacia
	TSS
	0.9
	95.6
	94.5
	MAXENT

	Thuja plicata
	TSS
	1.0
	99.3
	98.6
	GLM

	Thuja plicata
	TSS
	1.0
	98.8
	98.4
	GAM

	Thuja plicata
	TSS
	1.0
	98.8
	99.8
	GBM

	Thuja plicata
	TSS
	1.0
	99.1
	98.0
	CTA

	Thuja plicata
	TSS
	0.9
	97.0
	96.8
	ANN

	Thuja plicata
	TSS
	1.0
	100.0
	100.0
	RF

	Thuja plicata
	TSS
	1.0
	99.3
	99.0
	FDA

	Thuja plicata
	TSS
	1.0
	99.5
	99.8
	MARS

	Thuja plicata
	TSS
	0.9
	97.2
	96.8
	MAXENT



Statistics for evaluation for the ensemble SDM for the target species
	 
	Model evaluation

	Species
	Criteria
	Testing data
	Evaluation data
	Sensitivity
	Specificity

	Abies grandis
	TSS
	0.97
	0.99
	98.84
	98.32

	Fraxinus pennsylvanica
	TSS
	0.97
	0.96
	97.92
	98.97

	Juglans nigra
	TSS
	0.96
	0.97
	98.42
	98.00

	Pinus contorta
	TSS
	0.95
	0.97
	97.36
	98.08

	Pseudotsuga menziesii
	TSS
	0.97
	0.95
	98.42
	98.49

	Pinus radiata
	TSS
	0.99
	0.96
	99.63
	98.94

	Quercus rubra
	TSS
	0.97
	0.98
	98.58
	98.77

	Robinia pseudoacacia
	TSS
	0.95
	0.99
	97.81
	96.75

	Thuja plicata
	TSS
	0.97
	0.96
	98.76
	98.58






	Prediction

	Prediction output
	Predicted probabilities from the individual models and target species were ensembled as a consensus model which combined the median probability over the selected models with True Skill Statistics threshold (TSS > 0.7) (Coetzee et al. 2009; Allouche, Tsoar, and Kadmon 2006). The median was chosen because it is known to be less sensitive to outliers than the mean. The estimated ensemble model predictions were presented as GeoTIFF rasters
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Figure S4: The production output of today’s climate is compared with those of the five species change scenarios for future climate (2081-2100, RCP 4.5). The section titled 'current' displays the present status of the analysed ecosystem service. The effects of the 5 species change scenarios are also shown. Purple dots indicate a negative change compared to the current state, and turquoise dots indicate a positive change. (Native): only native species are used; (Combi): Native and non-native species are used; (MSS): a tree species that fails is replaced by the most climatically suitable species, either coniferous or broadleaved; (CC/BB): coniferous species are primarily replaced by coniferous species and broadleaved species are primarily replaced by broadleaved species.  
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Figure S5: The avalanche risk of today’s climate is compared with those of the five species change scenarios for future climate (2081-2100, RCP 4.5). The section titled 'current' displays the present status of the analysed ecosystem service. The effects of the 5 species change scenarios are also shown. Purple dots indicate a negative change compared to the current state, and turquoise dots indicate a positive change.  (Native): only native species are used; (Combi): Native and non-native species are used; (MSS): a tree species that fails is replaced by the most climatically suitable species, either coniferous or broadleaved; (CC/BB): coniferous species are primarily replaced by coniferous species and broadleaved species are primarily replaced by broadleaved species. The number of plots was limited to those where avalanches are possible (see methods section). This restriction resulted in blank areas on the map. 
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Figure S6: The rockfall risk of today’s climate is compared with those of the five species change scenarios for future climate (2081-2100, RCP 4.5). The section titled 'current' displays the present status of the analysed ecosystem service. The effects of the 5 species change scenarios are also shown. Purple dots indicate a negative change compared to the current state, and turquoise dots indicate a positive change.  (Native): only native species are used; (Combi): Native and non-native species are used; (MSS): a tree species that fails is replaced by the most climatically suitable species, either coniferous or broadleaved; (CC/BB): coniferous species are primarily replaced by coniferous species and broadleaved species are primarily replaced by broadleaved species. The number of plots was restricted to those where rockfall has already occurred (see methods), resulting in blank areas on the map. 
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