Differential gene expression in leaves and roots of Hydrangea serrata treated with aluminium chloride

Anna-Catharina Scholpp¹, Hanna Marie Schilbert², Prisca Viehöver², Bernd Weisshaar², Michael Beckstette³, Judith Martha Neumann¹, Hanna Bednarz^{1,4} & Karsten Niehaus^{1*}

1 Metabolome- and Proteome Research, Faculty of Biology & CeBiTec, Bielefeld University

2 Genetics and Genomics of Plants, Faculty of Biology, CeBiTec, Bielefeld University

3 Center for Biotechnology (CeBiTec), Faculty of Technology, Bielefeld University

4 Medical School OWL, AG 3 Anatomy and Cell Biology

Supplementary Material and Methods

Sample preparation for LC-MS measurement

Hydrangea serrata freeze dried tissue material was analysed for dihydroisocoumarins with focus on relative hydrangenol, phyllodulcin, hydrangeic acid and their glycosidic contents. 200 mg \pm 10 mg of each replicate was ground and combined with 500 mg of 1 mm Zirconia beads. 1 mL of ice cold 80 % methanol including naringenin (Carl Roth, Karlsruhe, Germany) as internal standard with final concentration 0.04 mg/mL was added. The mixture was ribolysed 3x6000 rpm 30 sec pause and extracted at 4 °C, overnight. After centrifugation 14600 rpm for 20 min the particle free supernatant was transferred into fresh tubes. To the leave extracts was added 1 mL of n-Hexane. The solution was mixed by inverting 15x and then let separate the solvent phases. The lower methanol phase was transferred into a fresh tube. For further precipitation of still solved impurities, the extracts were stored over night at 4 °C and centrifuged the next day. The clear supernatant was transferred into glass vials with septum (WICOM, Heppenheim, Germany) and used for mass spectrometry measurement.

 Table 1. UHPLC-ESI-QToF-MS settings and gradient for dihydroisocoumarin separation

LC parameters

-	
solvents	A HPLC grade Water + 0.1 % formate
	B HPLC grade Acetonitrile + 0.1 % formate
flow	0.45 mL/min
column oven temperature	40 °C
injection volume	10 µL

ESI-MS parameters

-	
dry gas	8 L/min
nebulizer gas	3 Bar
dry temperature	180 °C
mass detection range	120-1000 m/z
collision cell collision energy	40 eV

Supplementary Results and Figures

Relative DH content in *Hydrangea serrata* roots and leaves. UHPLC-ESI-QToF-MS analysis revealed a tissue specific profile.

Figure 1. TIC (total ion chromatogram) of methanolic Hydrangea serrata root extracts in UHPLC-ESI-QToF-MS measurement for dihydroisocoumarin profiling. Turquoise spectra indicate samples from aluminium chloride (AICI₃) treated plants im comparison to the red spectra, which indicate control.

Figure 2. TIC (total ion chromatogram) of methanolic *Hydrangea serrata* leaf extracts in UHPLC-ESI-QToF-MS measurement for dihydroisocoumarin profiling. Blue spectra indicate samples from aluminium chloride (AICI₃) treated plants im comparison to the orange spectra, which indicate control.

Figure 3. Methanolic extracts from aluminium chloride (AlCl₃) treated *Hydrangea serrata* roots and control roots in UHPLC-ESI-QToF-MS measurement for dihydroisocoumarin profiling. Hydrangenol, hydrangenol-glycoside, hydrangenol-diglycoside, phyllodulcin and phyllodulcin-glycoside were identified in root extracts but there is no difference in samples from AlCl₃ treatment group compared to control. Glycosides and dihydroisocoumarins modified with disaccharide eluate at different retention times. The chromatogram shows the elution profile of the two dihydroisocoumarins assessed as hydrangenol [M-H+]⁻ 255.06 m/z and [M-H+]⁻ phyllodulcin 285.16 m/z obtained by extracted ion chromatogram (EIC) over a run of 55 min. Hydrangeic acid and hydrangenol are isobars. Hydrangeic acid should elute at shorter different retention time because it has a carboxylic acid group instead of the closed ring.

Figure 4. Mass spectrum of dihydroisocoumarin assessed as hydrangenol [M-H+]⁻ 255.0662 m/z and hydrangenol-glycoside 417.12 m/z, as well as hydrangenol-diglycoside 589.20 m/z. Glc indicates modification of the metabolite with a molecule of 162 Da which is the mass of a hexose attached via glycosidic bond. Suc indicates the modification with the disaccharide sucrose.

Figure 5. Methanolic extracts from aluminium chloride (AlCl₃) treated *Hydrangea serrata* leaves and control leaves in UHPLC-ESI-QToF-MS measurement for dihydroisocoumarin profiling. Hydrangenol, hydrangenol-glycoside, phyllodulcin, phyllodulcin-glycoside and phyllodulcin-diglycoside were identified. Phyllodulcin is more present in leaf extracts compared to hydrangenol. There is no dihydroisocoumarin relative content difference in AlCl₃ treatment compared to control. Glycosides and dihydroisocoumarins modified with disaccharide eluate at different retention times. The chromatogram shows the elution profile of the two dihydroisocoumarins assessed as hydrangenol [M-H+]⁻ 255.06 m/z and [M-H+]⁻ phyllodulcin 285.16 m/z obtained by extracted ion chromatogram (EIC) over a run of 55 min.

Figure 6. Extracted ion count chromatogram of dihydroisocoumarin assessed as [M-H+]⁻ phyllodulcin-diglycoside 627.19 m/z.

Figure 7. Mass spectrum of dihydroisocoumarin assessed as phyllodulcin [M-H+]⁻ 285.0758 m/z and phyllodulcin-glycoside 447.20 m/z as well as phyllodulcin-diglycoside 627.19 m/z. Glc indicates modification of the metabolite with a molecule of 162 Da which is the mass of a hexose attached via glycosidic bond. to Suc indicates the modification with the disaccharide sucrose. Methanolic extracts from aluminium chloride (AlCl₃) treated *Hydrangea serrata* leaves and control leaves in UHPLC-ESI-QTOF-MS measurement for dihydroisocoumarin profiling.

Comparison of homology

580,770 contigs were obtained from the Trinity *de novo* assembly. The accession of Trinity IDs encodes the Trinity "gene" and "isoform" information. At the contig level of transcripts, it is not possible to resolve the number of alleles and/or paralogs for one gene without reference genome.

As one example, the level of phylogeny was compared of all contigs (CDS) which were functionally annotated as *pal*. A multiple sequence alignment on cDNA level was made using clustalW (<u>https://www.genome.jp/tools-bin/clustalw</u>). The phylogenetic analysis pipeline by ETE3 on GenomeNet (<u>https://www.genome.jp/tools/ete/</u>) was used to do an alignment and phylogenetic constructions using ETE3 3.1.2 (Huerta-Cepas et al., 2016).

A phylogram was constructed and visualised using fasttree (Price et al., 2010). This phylogram of all fiftyfive contigs which were functionally annotated as *pal* (phenylalanine ammonia lyase) from the *de novo* transcriptome of *H. serrata*. The values at the tree nodes are SH-like for maximum likelihood. The Trinity IDs with the same main number from one gene cluster (c) which were assigned as "isoforms" (i) show small distances in the tree.