Parameter	Formula	Description
AG	$AG = \frac{1}{(M-1)(N-1)} \times \sum_{i=1}^{(M-1)(N-1)} \sqrt{\left(\left(\frac{\partial f\left(x_{i}, y_{j}\right)}{\partial x_{i}}\right)^{2} + \left(\frac{\partial f\left(x_{i}, y_{j}\right)}{\partial y_{j}}\right)^{2}\right)/2}$	The average gradient measures the clarity of the fused image. A larger average gradient indicates more texture details and higher quality of the fused image(Jin and Wang, 2014).
SF	$SF = \sqrt{RF^{2} + CF^{2}}$ $RF = \sqrt{\sum_{i=1}^{M} \sum_{j=2}^{N} (x_{i,j} - x_{i,j-1})^{2}} CF = \sqrt{\sum_{i=2}^{M} \sum_{j=1}^{N} (x_{i,j} - x_{i-1,j})^{2}}$	Line spatial frequency reflects image details and texture information. A higher spatial frequency value indicates richer texture details and edge information in the fused image, making it easier for human vision to perceive.
SD	$SD = \sqrt{\frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} [H(\mathbf{i}, j) - \overline{H}]^2} \overline{H} = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} H(\mathbf{i}, j)$	Standard deviation reflects the richness of fused image information and measures changes in pixel intensity. A higher standard deviation in the fused image corresponds to increased image contrast and richer semantic information.
	$\mathbf{SCD} = r(D_1, S_1) + r(D_2, S_2)$	
SCD	$r\left(D_{k},S_{k}\right) = \frac{\sum_{i}\sum_{j} \left(D_{k}\left(i,j\right) - \overline{D}_{k}\right) \left(S_{k}\left(i,j\right) - \overline{S}_{k}\right)}{\sqrt{\left(\sum_{i}\sum_{j} \left(D_{k}\left(i,j\right) - \overline{D}_{k}\right)^{2}\right) \left(\sum_{i}\sum_{j} \left(S_{k}\left(i,j\right) - \overline{S}_{k}\right)^{2}\right)}}$	Difference correlation involves using the sum of correlations between the input image and the difference image as a quality measure for the fused image. (Aslantas and Bendes, 2015).
Q^{abf}	$Q^{AB/F} = \frac{\sum_{n=1}^{N} \sum_{m=1}^{M} Q^{AF}(n,m) w_{A}(n,m) + Q^{BF}(n,m) w_{B}(n,m)}{\sum_{i=1}^{N} \sum_{j=1}^{M} (w_{A}(i,j) + w_{B}(i,j))} Q^{XF}(n,m) = Q^{XF}(n,m) Q_{a}^{XF}(n,m)$	Gradient-based fusion performance assesses how well edge information from the original image is preserved in the fused image using local metrics. A smaller value indicates more lost edge information, while a larger value suggests more complete preservation of edge information.
EN	$EN = -\sum_{x=0}^{L} p(x) \log_2 p(x)$	Information entropy reflects the richness of information in an image. Generally, the more information an image contains, the higher its information entropy.

_

In the AG calculation formula, f(x, y) is the image function, and M and N are the rows and columns of the image, respectively. In the SF calculation formula, x_{ij} represents a point on the fused image. In the SD calculation formula, represents the average grayscale value of the image. In the SCD calculation formula, $(D_1 \text{ and } D_2 \text{ represent the difference image, with their respective})$

calculation formulas $D_1 = F - S_2$ and $D_2 = F - S_1$. This indicates that the difference image between one of the input images (S_2) and the fused image (F) nearly reveals the information conveyed from the other input image (S_1). The function calculates the correlation between S_1 and D_1 , S_2 and D_2 . Here, k = 1, 2, and represent the average pixel values of S_k and D_k respectively. In the $Q^{AB/F}$ calculation formula, $Q_g^{XF}(n,m)$ and $Q_a^{XF}(n,m)$ represent the edge strength and direction value at the (n,m) position respectively, and W_A and W_B represent the weight. In the EN

calculation formula, x represents the grayscale level of the image, and p(x) denotes the probability distribution of the grayscale value.