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APPENDIX A: BASIC CONCEPTS

This section is dedicated to introduce basic concepts used in the main text.

0.1 MHD waves in plasma

The expression of the MHD waves can be derived from the MHD equations:

∂ρ

∂t
+∇ · (ρV) = 0 (1)

ρ
∂V

∂t
+∇p− 1

µ0
((∇×B)×B) = 0 (2)

−∂B
∂t

+∇× (V ×B) = 0 (3)

∂

∂t

(
p

ρΓ

)
= 0 (4)

here, ρ is the plasma density, V the plasma velocity, p the plasma pressure, B the magnetic field vector, µ0
the vacuum magnetic permeability and Γ the poly-tropic index. The linearization of these equations can be
done by writing the time evolving variables in equilibrium and perturbation components (A = A0 + Ã),
neglecting terms multiplying perturbation components. In addition, the perturbation components are
expressed assuming an evolution as Ã = Aei(r⃗·⃗k−ωt), with k⃗ the angular wave vector and omega the wave
angular velocity (perturbation symbols is dropped):

ωB+ k× (V ×B0) = 0 (5)

−ωρ0V + kp− (k×B)×B0

µ0
= 0 (6)

−ωρ+ ρ0k ·V = 0 (7)

−ω
(
p

p0
− Γρ

ρ0

)
= 0 (8)
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If ω ̸= 0, it follows that:

ρ = ρ0
k ·V
ω

(9)

p = Γp0
k ·V
ω

(10)

B =
(k ·V)B0 − (k ·B0)V

ω
(11)

replacing these perturbed variables in the equation 6:

[ω2 − (k ·B0)
2/(µ0ρ0)]V =

[
(Γp0)/ρ0 + (B2

0)/(µ0ρ0)

k
− (k ·B0)

µ0ρ0
B0

]
(k ·V)− (k ·B0)(V ·B0)

µ0ρ0
k

(12)
it is assumed, with out losing generality, that B0 is aligned with the z-axis and the angular wave vector
lies in the x-z plane. The angle θ is defined between B0 and the angular wave vector. Thus, equation 12
reduces to an eigenvalue equation problem:ω2 − k2V 2

A − k2V 2
S sin2 θ 0 −k2V 2

S sin θ cos θ
0 ω2 − k2V 2

A cos2 θ 0
−k2V 2

S sin θ cos θ 0 ω2 − k2V 2
S cos2 θ

VxVy
Vz

0
0
0

 (13)

here, VA is the Alfvén velocity and VS the sound speed, defined as:

VA =

√
B2
0

µ0ρ0
(14)

VS =

√
Γp0
ρ0

(15)

the wave dispersion relation is calculated setting the matrix determinant to zero:(
ω2 − k2V 2

A cos2 θ
) [
ω4 − ω2k2(V 2

A + V 2
S ) + k4V 2

AV
2
S cos2 θ

]
= 0 (16)

For an infinite homogeneous plasma there are three different types of stable waves [7]:

• The shear Alfvén wave: ω = kVA cos θ. Motion perpendicular to the magnetic field and there is no
perturbation of the plasma density / pressure.

• Slow magnetosonic wave: ω = kV−. Motion along to the magnetic field and there is a perturbation of
the plasma density / pressure.

• Fast magnetosonic wave: ω = kV+. Motion perpendicular or parallel to the magnetic field and there is
a perturbation of the plasma density / pressure.

0.2 Shear Alfvén waves in fusion devices

The magnetic field inside fusion devices shows a periodicity that can be expressed with respect to the
safety factor, thus the wave angular velocity can be written as:

ω =
n−mq

R
VA (17)
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This dispersion relation defines the Alfvén continuum, that is to say, the Alfvén continuum indicates the
frequency of the shear Alfvén waves vs. the plasma radius. Nevertheless, there is a periodic variation of the
magnetic field intensity along the magnetic field line, leading to a modification of the Alfvén speed and
shear Alfvén wave angular velocity. The consequence is the generation of gaps in the Alfvén continuum
induced by the destructive interaction of counter propagating Alfvén waves. Several examples of Alfvén
continuum gaps in tokamaks and stellarators are discussed in this article

0.3 Alfvén eigenmodes

The Alfvén Eigenmodes (AE) are instabilities triggered inside the Alfvén continuum gaps by periodic
perturbations with the same or a fraction of the natural frequency of the plasma. The driver of the
perturbation can be the energetic particles in fusion devices if the EP velocity is similar or a fraction of the
MHD group velocity, leading to the following resonance condition:

Ω = ω − nωζ − lωθ = 0 (18)

with ω the AE frequency, n the AE toroidal number, l an arbitrary integer, ωθ the EP orbit poloidal
frequency and ωζ the EP orbit toroidal frequency. Here, ωθ and ωζ are function of the invariants: energy,
magnetic moment and toroidal angular momentum.

Different families of AEs can be triggered in fusion plasma linked to the toroidal and helical magnetic
field periodicity, magnetic field shear, sound wave couplings, between others. Table 1 shows several
examples.

Type Name Origin
RSAE Reverse shear Null magnetic shear
BAE Beta Compressibility
GAE Global Continuum minima
TAE Toroidal m and m+ 1 wave coupling
EAE Ellipticity m and m+ 2 wave coupling
NAE Noncircularity m and m+ 3 (or higher) wave coupling
HAE Helicity n and n+ device period

Table 1. Alfvén eigenmode acronym (first column), name (second column) and origin (third column).
Here, m is the poloidal AE mode number.

APPENDIX B: NUMERICAL MODEL

This appendix is dedicated to show the derivation of the gyro-fluid model included in the FAR3d code.

0.4 Reduced MHD equations

Using the full resistive MHD equations as starting point, the reduced resistive MHD equations are
derived:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ J×B (19)

∂p

∂t
+ v · ∇p = −Γp∇ · v (20)

∇× E = −∂B
∂t

(21)
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E+ v ×B = ηJ (22)

∇ ·B = 0 (23)

∇×B = µ0J (24)

The FAR3d model uses the stellarator expansion to simplify the analysis of the stability problem. This
leads to a reduced MHD model which effectively removes the fast compressional Alfvén wave dynamics.
Following this approximation, the magnetic field can be expressed as an ordering of terms with the uniform
toroidal field (Bζ) as the dominant component, verifying the relation B/Bζ) ≈ ϵ << 1, with B higher
order terms of the magnetic field expansion [2, 3, 4]. Thus, the FAR3d model implicitly assumes equilibria
with high aspect ratio. Another condition for the application of the stellarator expansion is the equilibria
should have a thermal β value similar to the inverse aspect ratio, that is to say, the variables can be split
into equilibrium + perturbation components with the perturbation smaller than the equilibrium component.

From Ohm’s law, small plasma resistivity and slow field variation (slower than the Alfvén time) are
assumed

E×B+ (v ×B)×B ≃ 0 ⇒ v⊥ =
E×B

B2
(25)

If we assume high aspect ratio and low thermal plasma β, that is to say β ∼ ϵ << 1, then:

v⊥ = −
∇Φ×Bζe

ζ

B2
(26)

with Φ the electrostatic potential. Equilibrium Boozer coordinates are used. The generalized radial
coordinate ρ is defined such that the toroidal flux is B0ρ

2/2, where B0 is the averaged magnetic field
strength at the magnetic axis. The reciprocal base vectors are (∇ρ, ρ∇θ, R0∇ζ), where R0 is the major
radius. The Jacobian of the transformation is:

√
g =

B0

R0

J − -ιI
B2

(27)

Thus, at the lowest order with B̃ζ = 0 and B0,ζ = J/R0, the perpendicular components of the velocity
field are:

vρ
⊥ = − 1

B0

1

ρ

∂Φ

∂θ
(28)

vθ
⊥ =

1

B0

∂Φ

∂ρ
(29)

The toroidal magnetic field perturbation is set to zero to eliminate the propagation of the fast magnetosonic
waves across the magnetic field, thus the perturbed magnetic field is:

B̃⊥ ≃ ∇ζ ×∇ψ̃ (30)

thus:
B̃ρ

⊥ = − 1
√
g

1

R0

1

ρ

∂ψ

∂θ
(31)

B̃θ
⊥ =

1
√
g

1

R0

∂ψ

∂ρ
(32)
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corresponding to the parallel potential vector:

A|| = − ψ

R0
eζ (33)

Consequently, in the direction parallel to the magnetic field, the electric field is:

E · b = E|| = −b · ∂A
∂t

− b · ∇Φ = ηJ · b−V ×B · b = ηJ|| (34)

Considering the ordering of the different perturbed current components:

J̃ρ ∝ J̃θ ∝ ϵJ̃ζ (35)

small terms are neglected, thus:

B · J = BζJ
ζ =

J

R0
J̃ζ (36)

with the toroidal current perturbation:

J̃ζ =
1

R0µ0ρ

[
∂

∂ρ

(
−
gρθ√
g

∂ψ

∂θ
+ ρ

gθθ√
g

∂ψ

∂ρ

)
− ∂

∂θ

(
−
gρρ√
g

1

ρ

∂ψ

∂θ
+
gρθ√
g

∂ψ

∂ρ

)]
(37)

and the expression of the contravariant equilibrium toroidal current given by:

Jeq =
1

µ0
√
g

(
0,

1

R0

dJ

dρ
+

2ρ

a2
1

R0

∂β∗
∂ζ

,
1

ρ

dI

dρ
− 2ρ

a2
1

ρ

∂β∗
∂θ

)
(38)

with J the toroidal current and I the poloidal current functions. If the equation 34 is multiplied by B· and
the expression obtained in the equation 36, an equation for the evolution of the poloidal flux perturbation is
obtained:

∂ψ̃

∂t
=
∂Φ

∂ζ
− -ι

∂Φ

∂θ
+

1

B0

(
−1

ρ

∂ψ̃

∂θ

∂Φ

∂ρ
+
∂ψ̃

∂ρ

1

ρ

∂Φ

∂θ

)
+ η

√
gJJζ (39)

Next, in order to derive a vorticity evolution equation, the momentum conservation equation is multiplied
by the operator ∇×√

g, thus:

∂

∂t
[∇× (ρm

√
gv)] +∇× [ρm

√
g(v · ∇)v] = −∇√

g ×∇P +∇× (
√
gJ×B) (40)

Here, the V · ∇ operator is:

v · ∇ = v⊥ · ∇+ ṽ∥th∇∥ =
1

B0

(
−1

ρ

∂Φ

∂θ

∂

∂ρ
+
∂Φ

∂ρ

1

ρ

∂

∂θ

)
+ ṽ∥th∇∥ (41)

The toroidal component of the vorticity is:

U =
√
g [∇× (

√
gv)]ζ (42)

=
1

B0

(
1

ρ

∂

∂ρ

[
ρ
√
g

(
−gρθ

1

ρ

∂Φ

∂θ
+ gθθ

∂Φ

∂ρ

)]
+

1

ρ

∂

∂θ

[
√
g

(
gρρ

1

ρ

∂Φ

∂θ
− gρθ

∂Φ

∂ρ

)])
(43)
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thus, the evolution of the toroidal component of the vorticity perturbation is:

ρm√
g

∂Ũ

∂t
= − [∇× ρm

√
g(V · ∇)V]ζ − [∇√

g ×∇p̃th]ζ + [∇× (
√
gJ×B)]ζ (44)

The pressure equation is:

∂p̃th
∂t

= −v · ∇pth − Γpth

[
∇ · v⊥ +B∇||

(
ṽ||,th
B

)]
(45)

The equation of the thermal plasma parallel velocity is:

∂ṽ||,th
∂t

= −v · ∇v||,th − 1
√
g

1

ρmR0

(
∂

∂ζ
− ι

∂

∂θ

)
p̃− 1

ρm
√
g

dpth,0

dρ

1

ρ

∂ψ̃

∂θ
(46)

The normalized equations are obtained by normalizing the time to the Alfvén velocity τA =
R0

√
µ0mini(0)/B0 with R0 the major radius, the radial variable to the minor radius a considering

the relation 2|ψ′| = B0a
2, the poloidal flux to B0a

2, β∗ to B0R0/2, J and I to B0R0, Φ to B0a
2/τA0, U to

τ−1
A0 and the pressure to the value at the magnetic axis. The inverse aspect ratio is ϵ = a/R0, the magnetic

Reynolds number S = τR/τA with τR = µ0a
2/η(0) the resistive time. Thus, the normalized equations of

the poloidal flux and vorticity are (dropping Doppler and diffusion terms):

∂ψ̃

∂t
=

√
gB∇||Φ +

η

S

√
gJJ̃ζ (47)

∂Ũ

∂t
= −v · ∇Ũ +−

B
√
g

ρm
∇||J

ζ − β0
2ϵ2

√
g (∇√

g ×∇p̃)ζ (48)

Here, the operators are:

√
gB∇||f =

∂f̃

∂ζ
− ι

∂f̃

∂θ
− 1

B0

(
∂f0
∂ρ

1

ρ

∂ψ̃

∂θ
+

1

ρ

∂f0
∂θ

∂ψ̃

∂ρ

)
(49)

(∇√
g ×∇f)ζ =

∂
√
g

∂ρ

1

ρ

∂f̃

∂θ
− 1

ρ

∂
√
g

∂θ

∂f̃

∂ρ
(50)

The normalized pressure equation is:

∂p̃th
∂t

= −v · ∇p+ Γp

[
(∇√

g ×∇Φ)ζ −B∇∥

(
ṽ∥th
B

)]
(51)

where Γ is the adiabatic index and the velocity divergence is defined as:

∇ · v = ∇ · v⊥ +B∇||

(v||
B

)
(52)

The normalized equation of the parallel velocity of the thermal plasma is:

∂ṽ∥th
∂t

= −v · ∇ṽ∥th −
β0

2n0,th
∇∥p (53)
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The perpendicular gradient square operator is:

∇2
⊥ =

1
√
g

[
1

ρ

∂

∂ρ

(
ρgθθ

∂

∂ρ
− gρθ

∂

∂θ

)
+

1

ρ

∂

∂θ

(
gρρ

1

ρ

∂

∂θ
− gρθ

∂

∂ρ

)]
, (54)

with gρρ, gρθ and gθθ the metric covariant elements of the coordinate system transformation.

0.5 Gyro-fluid energetic particle equations

This section is dedicated to the derivation of the gyro-fluid moment equations included in the FAR3d
model (nonlinear terms not included here for simplicity). The approach used is to begin with a local
gyrokinetic moments analysis [5], and then extend this to a set of global model equations that capture
basic Landau resonance phenomena through use of closure relations. These closure relations involve
a set of scalar coefficients that are typically derived by optimizing the resonant response function fit
associated with this model to that obtained from an analytic kinetic calculation [1]. As will be indicated
below, an important closure term in the FAR3d gyro-fluid model is associated with the |∇||| operator. The
fact that FAR3d is based on a straight-field-line coordinate system using Fourier representations in the
toroidal/poloidal angle coordinates greatly facilitates the evaluation of this operator, since its application
reduces to multiplication by a one-dimensional function involving mode numbers and the q-profile; as a
result the absolute value can trivially be applied. For other coordinate systems and representations |∇|||
becomes a non-local operator and its evaluation becomes more complex. However, methods for this have
been developed and implemented, for example in the BOUT++ model [6].

Following [5], the EP density moment is:

(ω − ωd)nf = k||nf0vf,|| −
qfnf0
Tf

[ω∗ − ωd + (ω − ωd)(1− Γ0)] Φ (55)

and the EP parallel velocity moment is:

(ω−ωd)v||,f = k||
Tf
mf

(
nf
nf0

+
qfΦ

Tf

)
−v2th,f (ω−ω∗)Γ0

qfA||
Tf

+(2a0−1)k||

(
nf
nf0

+
qfΦ

Tf

)
+
√
2a1k||

v||,f
vth,f
(56)

The above equation would normally couple to the next order EP perturbed temperature equation. However,
a closure relation has been incorporated here which relates the EP perturbed temperature to the lower order
EP moments. The parameters γI = ηf = 0, Γ0 = 1, L1,2,3,4,5 = 1 and νj = 0 are assumed for simplicity.
Next, the ansatz is made that the equations can be converted from frequency / local wavenumber space to
the time / global flux coordinate framework by multiplying the equations by −i and using the operator
definitions −iω ⇒ ∂

∂t , ik|| ⇒ ∇||, iωd ⇒ Ωd amd iω∗ ⇒ Ω∗, the EP density moment equation is:

∂nf
∂t

= −Ωd(nf )− nf0∇||v||,f − nf0Ωd

(
qfΦ

Tf

)
+ nf0Ω∗

(
qfΦ

Tf

)
(57)

EP parallel velocity moment:

∂mfnfv||,f
∂t

= −
(
Ωd +

√
2a1vth,f |∇|||

)
mfnfv||,f − (2a0 − 1)Tf∇||nf + qfnf0Ω∗

(
ψ

R0

)
(58)
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In vectorial form, the drift and diamagnetic frequencies are represented by the operators:

Ωd =
v2th,f
Ωc

B⃗0 × ∇⃗B0

B2
0

· ∇⃗ (59)

Ω∗ = −
Tf

qfB0nf0
∇⃗nf0 ·

B⃗0

B0
× ∇⃗ (60)

using the contravariant form of B⃗0:

Ωd =
Tf

2ρR0qf
√
gB4

0

[(
I
∂B2

0

∂ζ
+ J

∂B2
0

∂θ

)
∂

∂ρ
−
(
2ρβ∗
a2

∂B2
0

∂ζ
+ J

∂B2
0

∂ρ

)
∂

∂θ
+

(
2ρβ∗
a2

∂B2
0

∂θ
− I

∂B2
0

∂ρ

)
∂

∂ζ

]
(61)

Ω∗ = −
Tf

qfB
2
0nf0

1

ρR0
√
g

dnf0
dρ

(
I
∂

∂ζ
+ J

∂

∂θ

)
(62)

The normalized EP moment equations are then:

∂nf
∂t

= −
v2th,f
ϵΩcf

Ωd(nf )− nf0∇||v||,f − nf0Ωd (Φ) + nf0Ω∗ (Φ) (63)

∂v||,f
∂t

= −
v2th,f
ϵΩcf

Ωd(v||,f )−
√
2a1vth,f |∇||v||,f | − 2a0

v2th,f
nf0

∇||nf + v2th,fΩ∗ (ψ) (64)

The EP and thermal plasma equations are coupled through the last two terms on the right hand side of the
vorticity equation:

∂Ũ

∂t
= −v · ∇Ũ +−

B
√
g

ρm
∇||J

ζ − β0
2ϵ2

√
g (∇√

g ×∇p)ζ −
βf
2ε2

√
g
(
∇√

g ×∇ñf
)ζ (65)

The normalized drift and diamagnetic operators can then be written as, using the relation:

B2 =
J − ιI
√
g

(66)

Ωd =
1

√
gB4

0

[(
I

ρ

∂B2
0

∂ζ
+ J

1

ρ

∂B2
0

∂θ

)
∂

∂ρ
−
(
ρβ∗

∂B2
0

∂ζ
+ J

∂B2
0

∂ρ

)
1

ρ

∂

∂θ
+

(
ρβ∗

1

ρ

∂B2
0

∂θ
− I

ρ

∂B2
0

∂ρ

)
∂

∂ζ

]
(67)

Ω∗ = − 1
√
gB2

0nf0

dnf0
dρ

(
I

ρ

∂

∂ζ
+ J

1

ρ

∂

∂θ

)
(68)
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