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1. A simple method for nowcasting epidemic curves 
 
Here we provide the details of the nowcasting method used in this paper, which was developed within 

surveillance activities in the early months of the COVID-19 epidemic in Italy and is based on the same 
principles of the seminal paper by Lawless S1. 

 

1.1 Definitions 
Given a generic infectious disease, we define 𝐷 as a generic date of update of the epidemic curve by the 

epidemiological surveillance system. Therefore, 𝐷 implicitly identifies different versions of the surveillance 
database. We define the “observed epidemic curve” 𝐶!(𝑡) as the number of symptomatic cases 𝐶 with 
symptom onset at date 𝑡 reported by the surveillance system at a date of reporting 𝐷. We define the 
“consolidated epidemic curve” 𝐶∗(𝑡) as the epidemic curve that is observed at the end of the outbreak, when 
all cases have been inserted in the database. For dates of symptom onset sufficiently distant in the past from 
𝐷, we can assume that the observed epidemic curve is consolidated, i.e., that there is a time interval θ such 
that for 𝑡 ≤ 𝐷 − 𝜃, 𝐶!(𝑡) equals 𝐶∗(𝑡). We thus define for each reporting date 𝐷 a “consolidation 
distribution”, 𝜋!, representing the proportion of cases recorded in the consolidated curve 𝐶∗  and with 
symptom onset dates between 𝐷 − 𝜃 and 𝐷 that were already reported at date 𝐷: 

𝜋!(𝑧) =
#!(!%&)
#∗(!%&)

, (0 ≤ 𝑧 < 𝜃). 

The consolidation distribution 𝜋!	can be interpreted also as the proportion of cases having symptom onset 
at date 𝑡 = 𝐷 − 𝑧 that are reported in the surveillance database within 𝑧 days after symptom onset (i.e., at 
date 𝐷). By definition, 𝜋! cannot be known exactly at the date of reporting 𝐷; however, if we can obtain an 
approximation 𝜋0! using data available until 𝐷, an approximation 𝐶1!(𝑡) of 𝐶∗(𝑡) can be inferred at date 𝐷: 
𝐶∗(𝑡 = 𝐷 − 𝑧) ≅ 𝐶1!(𝑡 = 𝐷 − 𝑧) = (

)*!(&)
	𝐶!(𝑡 = 𝐷 − 𝑧).We refer to 𝐶1!(𝑡) as the “nowcasted epidemic 

curve” estimated at time 𝐷. 
From the approximated 𝜋0!, we can additionally define a “consolidation lag” 𝑇!,,, representing the 

minimum number of days that need to elapse before the number of cases of a given symptom onset date 
exceeds a given fraction 𝐹 of all cases that will be recorded at the end of the outbreak: 

𝑇!,, = min{𝑧: 𝜋0!(𝑧) ≥ 𝐹} 
The consolidation lag gives an indication on until which symptom onset date the number of cases observed 

at time 𝐷 can be considered sufficiently complete; for example, we can consider the epidemic curve 
observed at time 𝐷 to be at least 90% complete until symptom onset date 𝑡 ≤ 𝐷 − 𝑇!,-.. 

 

1.2 Estimation of consolidation distributions and lags 
One way to estimate 𝜋0!(𝑧) is to rely on consolidation distributions relative to symptom onset dates 𝑡 ≤

𝐷 − 𝜃 that are consolidated at the date of reporting 𝐷. These consolidation distributions can be obtained by 
comparing the number of cases for a given symptom onset date across successive reporting updates. For 
example, for 𝑡 = 𝐷 − 𝜃 we will have: 

𝑝!,.(𝑧) =
𝐶!%/0&(𝐷 − 𝜃)
𝐶∗(𝐷 − 𝜃) =

𝐶!%/0&(𝐷 − 𝜃)
𝐶!(𝐷 − 𝜃)

 

since we have assumed that 𝐶!(𝑡 = 𝐷 − 𝜃) = 𝐶∗(𝑡 = 𝐷 − 𝜃). Equivalently, for any symptom onset date 
𝑡 = 𝐷 − 𝜃 − 𝑖, 𝑖 ≥ 0: 

𝑝!,1(𝑧) =
𝐶!%/%10&(𝐷 − 𝜃 − 𝑖)
𝐶!%1(𝐷 − 𝜃 − 𝑖)

 

We propose to approximate the unknown consolidation distribution 𝜋!(𝑧) with the average over 
consolidation distributions 𝑝!,1 relative to the 𝑁 symptom onset dates closest to 𝐷 that are consolidated at 
𝐷: 

𝜋0!(𝑧) =
1
𝑁@ 𝑝!,1(𝑧)
2%(

13.
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1.3 Considerations on the choice of θ and N 
The appropriate choice of the values for 𝜃 and 𝑁 may not be obvious. The correct value of 𝜃 is itself 

dependent on the same consolidation lags that we want to estimate, and represents an abstraction, as there 
is no theoretical time limit with which an epidemic curve may be retrospectively updated. An educated guess 
of an appropriate value can be given by observing the consolidation lags related to different symptom onset 
dates in the early phases of the epidemic under study. For what concerns the value of 𝑁, it should be 
sufficiently high to stabilize the variability of observable consolidation distributions; however, the higher is 
𝑁, the older is the information included in the estimation of consolidation distributions. Note also that, with 
the present method, the first nowcasted estimates can be produced at least 𝜃 + 𝑁 − 1 days after the first 
date of reporting available. For the application to COVID-19 data, we chose 𝜃 = 30 days and 𝑁 = 30, and 
subjected this choice to a retrospective assessment in Section 4 and to a sensitivity analysis in section 5 of 
the present document.  

 

1.4 A practical example 
Figure S1 reports a practical example of the proposed method to approximate the consolidation 

distribution for a specific reporting date Δ = April 1, 2021, of the COVID-19 dataset. The closest date of 
symptom onset for which the number of cases can be assumed to be consolidated (i.e., numbers for this 
date will not change in reported epidemic curves successive to April 1, 2021) is Δ − 𝜃 = March 2, 2021, given 
our choice of 𝜃=30 days. The estimate of 𝑝4,. will be given by the number of cases with symptom onset on 
March 2 reported in epidemic curves produced between March 2 and April 1 and normalized by the 
consolidated number reported on April 1 (Figure S1a). The estimate of 𝑝4,2%(, for 𝑁=30, will be given by the 
number of cases with symptom onset on Δ − 𝜃 − (𝑁 − 1) = February 1, reported between February 1 and 
March 3, normalized by the number reported on March 3. After averaging the 𝑁 observed consolidation 
distributions, we obtain the consolidation distribution 𝜋04(𝑧) relative to the date of reporting Δ (Figure S1b). 
Figure 1 in the main text shows an example of using the consolidation distribution to compute the nowcasted 
epidemic curve and reproduction numbers for the same date of reporting. 

 
Figure S1. Example of application of the proposed nowcasting technique using data from the Italian COVID-19 
integrated surveillance system for a selected reporting date (Δ = April 1, 2021). a) Approximation of the 
consolidation distribution. Light blue lines represent consolidation distributions for symptom onset dates between 
February 1 (𝑝!,#$%) and March 2 (𝑝!,&), 2021; 𝑝!,&, 𝑝!,%&, 𝑝!,'& and 𝑝!,#$% are reported in thicker and darker lines 
to highlight the variability across consolidation distributions. Dotted blue lines connect the values of different 
consolidation distributions for the same number 𝑧 of days elapsed since the corresponding symptom onset, 
𝑝!,((𝑧), for 𝑧=0, 10, 20 and 𝜃 (gray lines show 𝑝!,((𝑧) for the other values of 𝑧). The 𝑝!,((𝑧) distributions for the 
selected values of 𝑧 are reported on the right-hand side of the panel as blue dots, and their mean, corresponding 
to the estimated value of  𝜋*!(𝑧), is reported further to the right as a dark red dot. Pink dots represent the mean 
of 𝑝!,((𝑧) distributions, corresponding to the estimated value of  𝜋*!(𝑧), for the remaining values of 𝑧. b) Estimated 
consolidation distribution and corresponding consolidation lags. Light blue dots represent the distributions of 
𝑝!,((𝑧) for all values of 𝑧; dark red dots represent the estimated consolidation distribution at Δ, 𝜋*!(𝑧). Horizontal 
lines define selected completeness thresholds (50%, 70% and 90%) and corresponding vertical lines define the 
corresponding consolidation lags.  
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2. Integrated SARS-CoV-2 surveillance system 
 
Since February 27, 2020, the Istituto Superiore di Sanità has coordinated a national case-based surveillance 
system reporting on all human cases with laboratory-confirmed SARS-CoV-2 infections S2 defined as per 
the concurrent European Case Definition S3. Until January 2021, all cases were confirmed by RT-PCR; after 
that date, confirmation with rapid antigen tests was also accepted S4. The system was mandated by 
national law, regulated by dedicated technical documents that described data and data quality 
requirements and provided weekly data quality verification reports and ad hoc verification of 
incomplete/inconsistent items to each of the 21 Italian Regions and Autonomous Provinces S5. 
The system was based on an online dedicated and secure platform initially compiled manually by regional 
public health officers. As the epidemic progressed, with high case-loads, standardization for the upload of 
regional datasets was defined and implemented. The system allowed the collection of demographic data, 
geographic location data, date of symptom onset, date of diagnoses, date of hospitalization as well data on 
clinical severity and outcome. The definition of a case as symptomatic and of its date of symptom onset 
included any SARS-CoV-2-related symptoms, independently of its severity, as defined by clinical evaluation 
of the case. The definition of a case as imported was based on exposure outside the Italian territory 
ascertained through epidemiological investigations. 
Results of the surveillance system were summarized in a daily dashboard, epidemiological bulletins and 
used as one of the sources of a mixed method risk assessment protocol that supported pandemic response 
in Italy S6.  
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3. Estimation of the time-varying reproduction number 
 
The estimation of the time-varying reproduction number was performed by applying a standard method 
S7–9 which requires as input the number	of autochthonous (locally transmitted) cases by date of symptom 
onset A(t), the number of imported cases (infections acquired outside the geographical setting of interest) 
I(t), and an estimate of the distribution of the generation time φ(t) for the infection under study. The 
posterior distribution of RH(t) was obtained by applying Markov Chain Monte Carlo with Metropolis-
Hasting sampling (n = 50,000 iterations) to the likelihood function defined below: 

ℒ =LPNA(t);	RH(t)@φ(s)C(t − s)
5

63(

R
7

53(

 

where: 
• P(k; 	λ) is the probability mass function of a Poisson distribution (i.e., the probability of observing k 

events if these events occur with rate λ).  
• C(t) = A(t) + I(t)	is the total epidemic curve (total number of cases with symptom onset at time t). 
• φ(s) is the integral of the probability density function of the generation time evaluated between day 

s-1 and s.  
• RH(t) is the daily reproduction number at time t. 

The posterior distribution of the time-varying reproduction number R(t) was computed by applying a weekly 
moving average to the posterior distribution of RH(t). 
The same procedure reported above was applied to the consolidated epidemic curves C∗(t) in order to 
estimate the reference reproduction number R∗(t), and, at each reporting date D, to the net and nowcasted 
epidemic curves (C7(t) and CW7(t) respectively), in order to estimate the net (R7(t) ) and nowcasted (RX7(t) ) 
reproduction numbers over time.  
For application to the Italian COVID-19 data, nowcasting was applied only to the autochthonous component of 
the epidemic curve, based on the observation that imported cases represented in most cases a negligible 
fraction of the total (median 0.4%, IQR 0.20-1.88% across symptom onset dates between January 28, 2020, 
and December 31, 2021). For the distribution of the generation time φ(s), we used the distribution of the 
serial interval estimated in Italy for ancestral lineages S10, given by a gamma function with shape 1.87 and rate 
0.28, for a mean of 6.68 days. Further estimates of the distribution of the generation time in Italy for 
successively emerged variants showed minimal changes with respect to these values S10, S11.  
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4. Retrospective assessment on the choice of q  
 
A critical assumption in the method for nowcasting epidemic curves is that, for t ≤ D − θ, the reported 
epidemic curve at day D, C7(t), approximates the consolidated epidemic curve C∗(t). In order to assess 
the goodness of the chosen value for θ (equal to 30 days in the baseline analysis) when nowcasting COVID-
19 epidemic curves in Italy, we computed the mean absolute percentage error η(θ) and the root mean 
squared error ε(θ) between the last values considered stable for the reported epidemic curve, given by 
C[(t; θ) = C508(t) at a certain value of θ, and the corresponding reference values C∗(t): 

η(θ) =
1
n@

\C[(t; θ) − C∗(t)\
C∗(t)

9

535#

 

 

ε(θ) = ]
1
n@\C[(t; θ) − C∗(t)\:

9

535#

 

Where t.	and T are the first and last symptom onset dates over which the error is computed and n = T −
t. + 1 is the number of data points in C[(t). We evaluated η(θ) and ε(θ) for θ between 1 and 50, over the 
period comprised between t. = May 1, 2020 (the first reporting date that was available in our dataset) and 
T = November 11, 2021 (the last date for which C[  could be computed when θ=50), resulting in n=560 data 
points. Figure S2 shows that both error metrics stabilize when θ is above 20 days, confirming that θ=30 
days was an appropriate choice for Italian COVID-19 data. 
 
 

a)      b)  
 
Figure S2. Error metrics for assessing the choice of 𝛉. a) Mean absolute percentage error, η(θ); b) Root mean 
square error, ε(θ) . The error value for the adopted value of θ=30 days is highlighted in red. To better 
appreciate differences in errors for values of θ>20 days, insets show the same graph with a zoom on the y-axis.  
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5. Sensitivity analysis on q and N  
 
The performance of the method proposed in this study may depend on the choice of its two parameters: 
the number of days after which a symptom onset date can be considered consolidated (θ) and the number 
of observed consolidation distributions used to nowcast the epidemic curves (N). In order to evaluate the 
sensitivity of model results with respect to the chosen values, we repeated the whole analysis for 6 
additional combinations of N and θ, where both parameters can assume values of 20, 30 and 40. Since the 
first nowcasted estimates are available θ + N	– 	1 days after the date of the first dataset, we evaluated 
results for reporting dates that were common to all combinations of θ and N, i.e. between July 19, 2020 
(first date of availability of nowcasted estimates for N = θ = 40) and December 31, 2021. Figures S3-S4 
show minimal changes in the estimation of consolidation lags and in the performance of the method when 
choosing alternative values of the two parameters for selected data completeness levels (F = 50%, 70% 
and 90%). 
 

a) b) c)  
Figure S3. Distribution of consolidation lags for different combinations of the parameters 𝛉 and N. a) 50% 
completeness. B) 70% completeness. C) 90% completeness.  
 

a) b) c)  
Figure S4. Distribution of the absolute errors between the reference reproduction number and the net and 
nowcasted reproduction numbers, respectively, for different combinations of parameters θ and N and for 
selected levels of completeness. a) 50% completeness. B) 70% completeness. C) 90% completeness.  
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6. Further results with alternative error functions  
 
In this section, we report results on further performance metrics for the net and nowcasted reproduction 
numbers in the baseline analysis (θ=30 days, N=30).  
Given the net reproduction numbers R;(D) = RbD − T7,;c estimated for a given data completeness F and 
at each reporting date D and consolidation lag T7,;, we considered: 
i) the bias error: 

E;<(D) = R∗(D) − R;(D), 

ii) the percentage error: 

E;=(D) = 100 ⋅ |?$(7)%?
∗(7)|

?∗(7)
 , 

iii) the error with tolerance: 
E;9(D) = max{R;(D) − R-@.B∗ (D);  R:.B∗ (D) − R;(D);  0}, 

where R:.B∗  and R-@.B∗  are respectively the lower and upper bounds of the 95%CI for the posterior 
distribution of R∗. The error with tolerance is defined in such a way to be zero when the average value 
of the net reproduction is within the 95% confidence interval of the reference estimate, and to be 
equal to the distance between the estimate and the closest boundary of the confidence interval 
otherwise.  

The corresponding errors were computed for the nowcasted reproduction numbers by substituting R; 
with RX;. 
Figure S5 and Table S1 compare the overall performance of the net and nowcasted estimates for different 
values of data completeness. The bias error shows a significant downward bias (underestimation) for the 
net reproduction number and a minimal bias for the nowcasted reproduction number at all levels of data 
completeness (see also Figure 3b in the main text). The percentage error shows that the net estimate at 
90% completeness and the nowcasted estimate at 70% completeness approximate the reference value 
with an accuracy higher than 95% in a majority of reporting dates. The results of the error with tolerance 
may be better appreciated in Figure S6 and Table S2, where we considered the fraction of times in which 
the net and nowcasted estimates are: 

i) correct (when the mean esjmate falls within the 95%CI of the reference); 
ii) underesjmated (when the mean esjmate falls below the 95%CI of the reference); 
iii) overesjmated (when the mean esjmate falls above the 95%CI of the reference). 

Net estimates of the reproduction number are correct only for 9% of reporting dates at a data 
completeness level of 90%, against 26% for the corresponding nowcasted estimate. Even with a data 
completeness of 50%, the nowcasted estimates are correct in a higher proportion of reporting dates (14%) 
compared to the net estimate at 90%. 
 

a) b) c)  
Figure S5. Comparison of performance between the net and nowcasted estimates using alternative error 
functions. a) Bias error; positive values represent underestimations of the reproduction number. b) Percentage 
error. c) Error with tolerance on the statistical variability of the reference estimate. 
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Estimate 𝐅 (%) 

Absolute 
error 

(median and 
IQR) 

Bias 
error 

(median and 
IQR) 

Percentage 
error 

(median and 
IQR) 

Error 
with tolerance 

(median and IQR) 

Nowcasted 

50 
0.051 

[0.023, 0.109] 
0.008 

[-0.035, 0.084] 
5.3% 

[2.7, 9.8] 
0.044 

[0.012, 0.097] 

70 
0.032 

[0.016, 0.068] 
0.006 

[-0.021, 0.055] 
3.4% 

[1.6, 6.2] 
0.023 

[0.003, 0.054] 

90 
0.017 

[0.007, 0.036] 
0.007 

[-0.009, 0.028] 
1.8% 

[0.8, 3.1] 
0.009 

[0, 0.022] 

Net 
70 

0.116 
[0.078, 0.171] 

0.116 
[0.078, 0.171] 

11.2% 
[9.1,14.3] 

0.105 
[0.067, 0.158] 

90 0.042 
[0.025, 0.066] 

0.039 
[0.023, 0.064] 

4.0% 
[2.7, 5.6] 

0.029 
[0.012, 0.049] 

Table S1. Comparison of performance metrics for the net and nowcasted estimates for selected levels of data 
completeness. 
 

 
Figure S6. Performance of the net and nowcasted reproduction numbers when considering the stochastic 
variability of the reference estimate, for different data completeness levels. 
 
 

Method 
 Data 

completeness 
(%) 

Under-
estimate 

% 

Over-
estimate 

% 

Correct 
estimate 

% 

Nowcasted 
50  47 39 14 
70  44 36 20 
90  45 29 26 

Net 90  88 3 9 
Table S2. Performance of the net and nowcasted reproduction numbers when considering the stochastic 
variability of the reference estimate, for selected data completeness levels. 
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7. Alternative definition of the data consolidation lag 
 
In the main text, we considered explicitly the case in which consolidation distributions πk4(z) are strictly 
monotonic with z (Figure 1 and S1). However, consolidation distributions in actual data may be non-
monotonic when the process of consolidation due to reporting delays is counterbalanced by the 
retrospective removal of cases associated to a date of symptom onset. This may happen for a number of 
reasons, such as the re-evaluation of the date of symptom onset for a case after additional epidemiological 
investigations or after identification of data entry errors, the reclassification of cases as non-cases, or as 
asymptomatic cases, the identification of case duplications in the dataset, and so on. In these situations, 
the functions πk4(z) may exceed the value of 1 at some z between 0 and θ. Figure S6 shows a comparison 
of the consolidation distribution for two reporting dates: July 15, 2020, and July 15, 2021. We evaluated 
the effect of an alternative definition of the data consolidation lag T4,; where we considered, instead of 
the earliest z for which πk4(z) reaches the desired completeness F, the latest z for which πk4(z) is less than 
1 − F away from its ideal value of 1: 

T4,;C = max
D
{|1 − πk4(z)| ≤ 1 − F		 ∧ 	 |1 − πk4(z − 1)| > 1 − F	}. 

An example of this second definition is shown in Figure S7 for July 15, 2020, and F=90%. 
In Figure S8, differences in the distribution of the data consolidation lag when considering the alternative 
definition are shown for different values of F and limited to the 210 reporting dates with a non-monotonic 
consolidation distribution. For F<70%, the data consolidation lags are identical; for F=80% and 90% the 
alternative definition produces longer data consolidation lags, but with substantially similar medians. In 
particular, with a data completeness of 80%, the alternative definition yields the same median lag of 10 
days but with a 95% confidence interval shifted upward (7-22 days versus 6-13 days in the baseline); with a 
data completeness of 90% the median lag grows from 12 days (95%CI 7-15) in the baseline to 13 days 
(95%CI 8-26) in the alternative definition. Table S3 shows that the alternative definition improves the 
performance of both the net and nowcasted estimates at 80% and 90% completeness, although at the cost 
of higher lags.  
 

 
Figure S7. Example of alternative definitions for the data consolidation lag. Blue and red dots represent the 
consolidation distributions associated to reporting dates July 15, 2020, and July 15, 2021, respectively. Triangles 
on the x-axis represent the estimated data consolidation lags according to the two definitions. In the case of a 
monotonic curve (Δ' = July 15, 2021), the two definitions are equivalent, while when the curves are non-
monotonic (Δ% = July 15, 2020), the two definitions may give different results. 
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Figure S8. Impact of alternative definitions for the data consolidation lag. The figure shows the data 
consolidation lag distributions for different levels of data completeness, according to the baseline and 
alternative definition. 
 

Method 
Data 

completeness (%) 
Definition of data 
consolidation lag 

Absolute error 
(median and IQR) 

Nowcasted 

80 Baseline 
0.048 

[0.02, 0.106] 

80 Alternative 
0.044 

[0.019, 0.102] 

90 Baseline 
0.041 

[0.018, 0.091] 

90 Alternative 
0.031 

[0.016, 0.07] 

Net 

80 Baseline 
0.083 

[0.055, 0.168] 

80 Alternative 
0.074 

[0.041, 0.148] 

90 Baseline 
0.054 

[0.027, 0.099] 

90 Alternative 
0.041 

[0.018, 0.093] 
Table S3. Absolute errors of the nowcasted and net reproduction numbers against the reference estimate, 
using alternative definitions of the data consolidation lag, for data completeness levels of 80% and 90%.  
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