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Supplementary Material
1 Appendix 1: Detail of the Critical Pseudo-Multi Impulse Analysis

In this appendix, the details of the critical pseudo-multi impulse analysis (section 2.1) is described as
follows.

1.1 First pseudo impulsive lateral force

Attime ¢t =7, ( i, > 0) , the first pseudo impulsive lateral force acts on the building model as shown

in Figure 1. Note that, before the action of the first pseudo impulsive force on the building model
(<,t,), the building model is in a stationary state (d(t) =0, V(t) =0, a(t) =0). The equivalent
velocity of the first modal response just after the action of the first pseudo impulsive lateral force
(171* ( i, )) is calculated using Eq. (A1):

V(i) ==A7,, (A1)
and the corresponding velocity vector (V( i, )) is calculated using Eq. (A2):
{,(lt )=IFII(I)II;l*(ltp)=_1F11(P11AVg’ (A2)

where |T",, @, is the first mode vector at the initial stage. The increment of input energy of the first

modal response (,AE,") is calculated via Eq. (A3):

« 1 [ 1 "
JAE, :51M1 {Vl (1tp)}2 251M1 lAVg2’ (A3)

where | M|" is the first modal mass at the initial stage. The cumulative input energy of the first modal

response (, E,") is calculated via Eq. (A4):

E

n =1

AE;. (A4)

1

To calculate the response after the action of the first pseudo impulsive lateral force, the equivalent
velocity (K* (t)) and velocity vector (v (t) ) are updated via Eq. (A5):

(i, +0) <V (12,).v(it, +0) < (., ). (A5)

In addition, the counting number of pulsive inputs (k) is setto & = 1.
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1.2 Free vibration after the first pseudo impulsive lateral force

After the action of the first pseudo impulsive lateral force, the building model oscillates without
external forces (free vibration) until the arrival of the second pseudo impulsive lateral force. The kinetic
energy, the damping dissipated energy, the cumulative strain energy, and the cumulative input energy

of the first modal response (E,, , E,,, , E, , and E,", respectively) are expressed as shown in Egs.

11 »

(A6)—(A9):
E. (1) %M,*{Vl*(t)}z, (A6)

£, (0)= [T, (0 (1) (A7

Ey ()= [T, (07, (1) (A8)

E“*(t)=%1M1*1AVg2=1E11*. (A9)

The first pseudo impulsive lateral force is proportional to the first mode vector, and thus the building
model oscillates predominantly in the first mode. Therefore, the kinetic energy, the damping dissipated
energy, the cumulative strain energy, and the cumulative input energy ( E,, E,, E;, and E,,

respectively) are approximated as shown in Eq. (A10):

(A10)

Note that the first mode vector (I',¢, ) updates any step according to Eq. (A11) until Dl* (t) reaches its
local peak (D, o (<0)).

1
Lo, & —

Dl (tmax)

The effective first modal mass (M,”) is then re-calculated according to Eq. (A12). The time ¢, , is

1% peak

d(t,..)- (A11)

defined as the time when D, (¢) reaches D,

peak *

M =T/¢,"Mo,, (A12)



The timing of the action of the second pseudo impulsive lateral force (,¢, > 7,) is determined from

the following conditions:

4, (,,)=0. (A13)

2%p

Equation (A13) is equivalent to the condition of critical timing given by Akehashi and Takewaki (2021,
2022). In Akehashi and Takewaki (2021), the critical timing of the second pseudo impulsive lateral
force is determined as the timing which maximize the energy input by the second input. Following the
Akehashi and Takewaki (2021), consider the case when the pseudo impulsive lateral force is
proportional to the influence vector (1) defined as Eq. (A15):

N
V=207, (AL4)
£

The condition of the critical timing of the second pseudo impulsive lateral force is expressed as

N
DM 4 (,t,)=0. (A15)
Jj=1
In Eq. (A15), Arj* (¢) is the equivalent relative acceleration of the ; -th modal response. For the case
of this study, when the influence vector (1) equals to the first mode vector (I",9;), the coefficient g,
is zero for 2< j < N and g, equals 1. Therefore, Eq. (A16) can be rewritten as Eq. (A16).
M4, (,t,)=0. (A16)

2%p

The condition expressed as Eq. (A16) is equivalent to Eq. (A13), because the effective first modal mass
(M,") is nonzero value.

1.3 Pseudo impulsive lateral force

Attime 1= ,¢, (1< k < N,—1), the next pseudo impulsive lateral force acts on the building model,
as shown in Figure 1. The equivalent velocity of the first modal response just after the action of the
next pseudo impulsive lateral force (V' ( ik, ) ) is calculated via Eq. (A17):

et

Vi (at,) =V (it —0) = 1AV, . (A17)

Here, V" ( ik, —O) is the equivalent velocity of the first modal response just before the action of the

next pseudo impulsive lateral force. Assuming that the velocity vector just before the action of the next
pseudo impulsive lateral force (V( il —0)) can be approximated by the first modal response, the

corresponding velocity vector ( ff( ik, )) can be expressed as Eq. (A18):

v(kHtp) = V(k+lt —0)—F1(p1 AV, = rlq’J}l*(kﬂtp)' (A13)
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The increment of the input energy of the first modal response (,AE,") is calculated via Eq. (A19):

R B . 1 . 2V (at, =0
11 AE, :EM1 |:{Vl (k+1tp)}2 _{Vl (k+ltp_0)}2i|:§M k+1AVg2{1+M}' (A19)

k+1 g

The cumulative input energy of the first modal response just after the action of the next pseudo
impulsive lateral force (,,, E,,) is calculated via Eq. (A20):

k+l En* = kEll* * AEI* . (A20)

To calculate the response after the action of the second pseudo impulsive lateral force, the equivalent
velocity (¥ ( t)) and the velocity vector (V(t) ) are updated via Eq. (A21):

1 oty +0) 77 ().

k+1"p

t,+0) (2, (A21)

k+1"p k+1"p

In addition, the counting number of the pulsive inputs (k) is updated such that k < k +1.

1.4 Free vibration

After the action of the k -th pseudo impulsive lateral force, the building model oscillates without
external forces (free vibration). The following response depends on & and N, .

In the case in which & is smaller than N, the free vibration of the building model continues until the
action of the next pseudo impulsive lateral force. During the free vibration, the first mode vector (I',¢,)
updates any step according to Eq. (A12) until D, (¢) reaches its local peak ( D/ peak ShOWN in Figure
1). The effective first modal mass (M,") is then re-calculated according to Eq. (A13). The time 7,

is defined as the time when Dl*(t) reaches , D, The timing of the action of the next pseudo

peak *
impulsive lateral force (,,7, > ) is determined from the following conditions (Eq. (A22)):

A4, (1at,)=0. (A22)

k+1%p

At time ¢ =

supplementary material.

il » the next pseudo impulsive lateral force acts as prescribed in Section 1.3 of this

When k equals N, the free vibration of the building model continues until £ =7, . The time 7.,

is defined as the time when D,” (t) reaches , D

*
N, ™1 peak *

Supplementary Figure 1 shows the flow of the critical PMI analysis. This flow is based on the flow
of the critical PDI analysis presented in Fujii (2024).
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Supplementary Figure 1. Flow of the critical PMI analysis.
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2 Appendix 2: Simplified Equations for Calculating the Energy Dissipation Capacity
During a Half Cycle of the Structural Response

*

It is assumed that the peak equivalent displacement of the first modal response (D, . ) occurs when

*

1 max

/ M) occurs. Following Fujii and Shioda (2023), the
energy dissipation capacity during a half cycle of the structural response is expressed as

the maximum momentary energy input (AE

1 max

AEl*max — AE',Ulf + AEﬂld + AEDI* ) (A23)
M/ M, M/ M,

In Eq. (A23), AE /”f* / M, and AE il d* / M, are the contributions from the hysteretic dissipated

energies of the RC MRFs and SDCs, respectively, while AE " / M is the contribution from viscous
damping.

Supplemental Figure 2 shows the simplified model for calculating AE mf* / M, and AE 1 S / M, . In
the figure, 4, f* and 4, are the contributions of the RC MRFs and SDCs, respectively, to the
and 4, — D,

* *

equivalent acceleration of the first modal response ( 4, ). Here, the 4, f* - D,

relationships are idealized by bilinear curves, where the “yield” point of the idealized Alf* -D/

oy » 4, ) and that of the idealized 4,,'~D," relationship is Yp(D, ,", 4,,, ). In
addition, #, and 4, denote the global ductility of the RC MRFs and SDCs, respectively, which are
defined in Eq. (A24):

relationship is Yr( D

lLlf :Dl*max/Dlyf*’lle :Dl*max/Dlya’* : (A24)
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Supplementary Figure 2. Simplified model for calculating the hysteretic dissipated energy during a

half cycle of structural response.

The contribution of the hysteretic dissipated energy of the RC MRFs is calculated using Eq (A25):

5

AE e e~
#ﬂf =4, D, fr ('uf) '

1
The function 7, ( 7 f\) is defined by Eq. (A26):
1

ﬁ(ﬂf) :J.fF <:uf’nD>d77D >

0

(A25)

(A26)
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where 77,, is the ratio of the displacements in the positive and negative directions. Given the left panel

of Supplemental Figure 2, f, ( u f,nD) is calculated as

L (-n) <4, <1
1

fi(pym) = ﬂf—%{n(%ﬂf)z} ,UfZIandOSﬂD_lu—f. (A27)

I
uy (V=11 )+ (ot =Jiptt, ) g1, 21and 2 STl
)

Note that, in Eq. (A27), the influence of the pinching behavior of the RC members on the hysteretic
energy dissipation in a half cycle of the structural response is considered by the parameter ¢. This is
an updated version of this equation, as compared with previous studies (Fujii, 2022; Fujii and Shioda,

2023). By substituting Eq. (A27) into Eq. (A26), the function ;‘; ( ,uf) is calculated as

—quz 0=y, <1

2 1
Loee, ~2efi ———1-c) u, 21

61,

(A28)

—_— | =

AVAE

Note that Eq. (A28) is consistent with the equation in Fujii and Shioda (2023): by substituting ¢ = 1
into Eq. (A28), the same equation for the perfectly non-pinching RC MRFs (Fujii and Shioda, 2023)
is obtained. Similarly, the contribution of the hysteretic dissipated energy of the SDCs is calculated
using Eq (A29):

AE " * *
]Mm*d = Alyd Dlyd fD (lud)' (A29)

1

The function £, (#,) is defined as in Eq. (A30):

1

Fo (1) = [ £ (ta0om5) (A30)

0

It is assumed that the energy dissipation of SDCs is independent of the pinching behavior of the
surrounding RC beams, as shown in the right panel of Supplemental Figure 2. Therefore, f, ( ,ud,nD)

is calculated such that



1
SHa (1=115) 0<p,<1
1 2 1
fD(ﬂd,ﬂD): :ud_E{l-’_(HD:ud) } My 2land 0<7, <—. (A31)
d

(L+7,) 1, —2 i, 21 and LSf]DSI

d

By substituting Eq. (A31) into Eq. (A30), the function j’; (u,) is calculated as shown in Eq. (A32):

%ﬂdz O0<p, <1

1(9;@ —12+ij M, =1
6 u

d

IAVAE (A32)

The contribution of the viscous damping is calculated using Eq. (A33), as in Fujii and Shioda (2023):

AE." Irh

D1 1/ max * *
- A ' maxD max ? A33
Ml 12 11 1 ( )
where /max 18 the damping ratio corresponding to the peak equivalent displacement (D, ) and
A, f*max is the contribution of the RC MRF to the equivalent acceleration at D,"_, . In Fujii and Shioda

(2023), h,fmax is assumed to be proportional to the secant circular frequency of the first mode of the

RC MREF, corresponding to D

*

1 max

. Therefore, A, is calculated as:

a)l ‘max 1 A '*max
Py o = — = Lmp (A34)
oy 1@ D,

max

In Eq. (A34), @, and o, are the secant circular frequency of the first mode of RC MRF

f max

*

corresponding to the initial stage and D , respectively.

1 max



