
   

Supplementary Material 
1 Appendix 1: Detail of the Critical Pseudo-Multi Impulse Analysis 

In this appendix, the details of the critical pseudo-multi impulse analysis (section 2.1) is described as 
follows. 

1.1 First pseudo impulsive lateral force 

At time ( )1 1 0p pt t t= > , the first pseudo impulsive lateral force acts on the building model as shown 
in Figure 1. Note that, before the action of the first pseudo impulsive force on the building model 
( 1 pt t< ), the building model is in a stationary state ( ( )t =d 0 , ( )t =v 0 , ( )t =a 0 ). The equivalent 
velocity of the first modal response just after the action of the first pseudo impulsive lateral force 
( ( )*

1 1 pV t ) is calculated using Eq. (A1): 

 ( )*
1 1 1p gV t V= − Δ , (A1) 

and the corresponding velocity vector ( ( )1 ptv ) is calculated using Eq. (A2): 

 ( ) ( )*
1 1 1 1 1 1 1 1 1 1p p gt V t V= Γ = − Γ Δ1 1v φ φ , (A2) 

where 1 1Γ 1 1φ  is the first mode vector at the initial stage. The increment of input energy of the first 
modal response ( *

1 1EΔ ) is calculated via Eq. (A3): 

 ( ){ }2* * * * 2
1 1 1 1 1 1 1 1 1

1 1
2 2p gE M V t M VΔ = = Δ , (A3) 

where *
1 1M  is the first modal mass at the initial stage. The cumulative input energy of the first modal 

response ( *
1 1E ) is calculated via Eq. (A4): 

 * *
1 1 1 1IE E= Δ . (A4) 

To calculate the response after the action of the first pseudo impulsive lateral force, the equivalent 
velocity ( ( )*

1V t ) and velocity vector ( ( )tv ) are updated via Eq. (A5): 

 ( ) ( ) ( ) ( )* *
1 1 1 1 1 10 , 0p p p pV t V t t t+ ← + ←v v  . (A5) 

In addition, the counting number of pulsive inputs ( k ) is set to k  = 1. 

 



  Supplementary Material 

 2 

1.2 Free vibration after the first pseudo impulsive lateral force 

After the action of the first pseudo impulsive lateral force, the building model oscillates without 
external forces (free vibration) until the arrival of the second pseudo impulsive lateral force. The kinetic 
energy, the damping dissipated energy, the cumulative strain energy, and the cumulative input energy 
of the first modal response ( *

1KE , *
1DE , *

1SE , and *
1IE , respectively) are expressed as shown in Eqs. 

(A6)–(A9): 

 ( ) ( ){ }2* * *
1 1 1

1
2KE t M V t= , (A6) 

 ( ) ( ) ( )* *
1 1 1

0

t

DE t t V t dt= Γ T
1 Dφ f , (A7) 

 ( ) ( ) ( )* *
1 1 1

0

t

SE t t V t dt= Γ T
1 Rφ f , (A8) 

 ( )* * 2 *
1 1 1 1 1 1

1
2I g IE t M V E= Δ = . (A9) 

The first pseudo impulsive lateral force is proportional to the first mode vector, and thus the building 
model oscillates predominantly in the first mode. Therefore, the kinetic energy, the damping dissipated 
energy, the cumulative strain energy, and the cumulative input energy ( KE , DE , SE , and IE , 
respectively) are approximated as shown in Eq. (A10): 

 

( ) ( )
( ) ( )
( ) ( )
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1
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1

*
1
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1
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E t E t

 ≈


≈


≈
 ≈

. (A10) 

Note that the first mode vector ( 1Γ 1φ ) updates any step according to Eq. (A11) until ( )*
1D t  reaches its 

local peak ( ( )*
1 1 0peakD < ). 

 
( ) ( )1 max*

1 max

1 t
D t

Γ ←1φ d . (A11) 

The effective first modal mass ( *
1M ) is then re-calculated according to Eq. (A12). The time 1 peakt  is 

defined as the time when ( )*
1D t  reaches *

1 1 peakD . 

 * 2
1 1M = Γ T

1 1φ Mφ , (A12) 
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The timing of the action of the second pseudo impulsive lateral force ( 2 1p pt t> ) is determined from 
the following conditions: 

 ( )*
1 2 0r pA t = . (A13) 

Equation (A13) is equivalent to the condition of critical timing given by Akehashi and Takewaki (2021, 
2022). In Akehashi and Takewaki (2021), the critical timing of the second pseudo impulsive lateral 
force is determined as the timing which maximize the energy input by the second input. Following the 
Akehashi and Takewaki (2021), consider the case when the pseudo impulsive lateral force is 
proportional to the influence vector ( ι ) defined as Eq. (A15): 

 
1

N

j j
j

q
=

= Γ jι φ . (A14) 

The condition of the critical timing of the second pseudo impulsive lateral force is expressed as 

 ( )* *
2

1
0

N

j j rj p
j

q M A t
=

= . (A15) 

In Eq. (A15), ( )*
rjA t  is the equivalent relative acceleration of the j -th modal response. For the case 

of this study, when the influence vector ( ι ) equals to the first mode vector ( jΓ jφ ), the coefficient jq  
is zero for 2 j N≤ ≤  and 1q  equals 1. Therefore, Eq. (A16) can be rewritten as Eq. (A16).  

 ( )* *
1 1 2 0r pM A t = . (A16) 

The condition expressed as Eq. (A16) is equivalent to Eq. (A13), because the effective first modal mass 
( *

1M ) is nonzero value. 

1.3 Pseudo impulsive lateral force 

At time 1k pt t+=  (1 ≤ k  ≤ pN −1), the next pseudo impulsive lateral force acts on the building model, 
as shown in Figure 1. The equivalent velocity of the first modal response just after the action of the 
next pseudo impulsive lateral force ( ( )*

1 1k pV t+
 ) is calculated via Eq. (A17): 

 ( ) ( )* *
1 1 1 1 10k p k p k gV t V t V+ + += − − Δ . (A17) 

Here, ( )*
1 1 0k pV t+ −  is the equivalent velocity of the first modal response just before the action of the 

next pseudo impulsive lateral force. Assuming that the velocity vector just before the action of the next 
pseudo impulsive lateral force ( ( )1 0k pt+ −v ) can be approximated by the first modal response, the 

corresponding velocity vector ( ( )1k pt+v ) can be expressed as Eq. (A18): 

 ( ) ( ) ( )*
1 1 1 1 1 1 10k p k p k g k pt t V V t+ + + += − − Γ Δ ≈ Γ1 1v v φ φ  . (A18) 
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The increment of the input energy of the first modal response ( *
2 1EΔ ) is calculated via Eq. (A19): 

 ( ){ } ( ){ } ( )*
2 2 1 1* * * * * 2

1 1 1 1 1 1 1 1 1
1

2 01 10 1
2 2

k p
k k p k p k g

k g

V t
E M V t V t M V

V
+

+ + + +
+

 −  Δ = − − = Δ +    Δ  

 . (A19) 

The cumulative input energy of the first modal response just after the action of the next pseudo 
impulsive lateral force ( *

1 1k IE+ ) is calculated via Eq. (A20): 

 * * *
1 1 1 1 1k I k I kE E E+ += + Δ . (A20) 

To calculate the response after the action of the second pseudo impulsive lateral force, the equivalent 
velocity ( ( )*

1V t ) and the velocity vector ( ( )tv ) are updated via Eq. (A21): 

 ( ) ( ) ( ) ( )* *
1 1 1 1 1 10 , 0k p k p k p k pV t V t t t+ + + ++ ← + ←v v  . (A21) 

In addition, the counting number of the pulsive inputs ( k ) is updated such that 1k k← + . 

1.4 Free vibration 

After the action of the k -th pseudo impulsive lateral force, the building model oscillates without 
external forces (free vibration). The following response depends on k  and pN . 

In the case in which k  is smaller than pN , the free vibration of the building model continues until the 
action of the next pseudo impulsive lateral force. During the free vibration, the first mode vector ( 1Γ 1φ ) 
updates any step according to Eq. (A12) until ( )*

1D t  reaches its local peak ( *
1k peakD  shown in Figure 

1). The effective first modal mass ( *
1M ) is then re-calculated according to Eq. (A13). The time k peakt  

is defined as the time when ( )*
1D t  reaches *

1k peakD . The timing of the action of the next pseudo 
impulsive lateral force ( 1k p k pt t+ > ) is determined from the following conditions (Eq. (A22)): 

 ( )*
1 1 0r k pA t+ = . (A22) 

At time 1k pt t+= , the next pseudo impulsive lateral force acts as prescribed in Section 1.3 of this 
supplementary material. 

When k  equals pN , the free vibration of the building model continues until endt t= . The time 
pN peakt  

is defined as the time when ( )*
1D t  reaches *

1pN peakD .  

Supplementary Figure 1 shows the flow of the critical PMI analysis. This flow is based on the flow 
of the critical PDI analysis presented in Fujii (2024). 
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Supplementary Figure 1. Flow of the critical PMI analysis.  
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2 Appendix 2: Simplified Equations for Calculating the Energy Dissipation Capacity 
During a Half Cycle of the Structural Response 

It is assumed that the peak equivalent displacement of the first modal response ( *
1 maxD ) occurs when 

the maximum momentary energy input ( * *
1 max 1E MΔ ) occurs. Following Fujii and Shioda (2023), the 

energy dissipation capacity during a half cycle of the structural response is expressed as 

 
* ** *

1 11 max 1
* * * *

1 1 1 1

f d DE EE E
M M M M

μ μΔ ΔΔ Δ= + + . (A23) 

In Eq. (A23), * *
1 1fE MμΔ  and * *

1 1dE MμΔ  are the contributions from the hysteretic dissipated 
energies of the RC MRFs and SDCs, respectively, while * *

1 1DE MΔ  is the contribution from viscous 
damping. 

Supplemental Figure 2 shows the simplified model for calculating * *
1 1fE MμΔ  and * *

1 1dE MμΔ . In 

the figure, *
1 fA  and *

1dA  are the contributions of the RC MRFs and SDCs, respectively, to the 

equivalent acceleration of the first modal response ( *
1A ). Here, the *

1 fA − *
1D  and *

1dA − *
1D  

relationships are idealized by bilinear curves, where the “yield” point of the idealized *
1 fA − *

1D  

relationship is YF( *
1 yfD , *

1yfA ) and that of the idealized *
1dA − *

1D  relationship is YD( *
1 ydD , *

1ydA ). In 

addition, fμ  and dμ  denote the global ductility of the RC MRFs and SDCs, respectively, which are 
defined in Eq. (A24): 

 * * * *
1 max 1 1 max 1,f yf d ydD D D Dμ μ= = . (A24) 
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Supplementary Figure 2. Simplified model for calculating the hysteretic dissipated energy during a 
half cycle of structural response.  

The contribution of the hysteretic dissipated energy of the RC MRFs is calculated using Eq (A25):  

  ( )
*

1 * *
1 1*

1

f
yf yf F f

E
A D f

M
μ μ

Δ
= . (A25) 

The function  ( )F ff μ  is defined by Eq. (A26): 

  ( ) ( )
1

0

,F f F f D Df f dμ μ η η=  , (A26) 
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where Dη  is the ratio of the displacements in the positive and negative directions. Given the left panel 
of Supplemental Figure 2, ( ),F f Df μ η  is calculated as 

 ( )

( )

( ){ }
( ) ( )

2 2

2

1 1 0 1
2

1 1, 1 1 and 0
2

11 1 and 1

f D f

F f f D f f D
f

f D D f D f f D
f

f

c

μ η μ

μ η μ η μ μ η
μ

μ η η μ η μ μ η
μ


 − ≤ ≤

= − + ≥ ≤ ≤


 − + − ≥ ≤ ≤


. (A27) 

Note that, in Eq. (A27), the influence of the pinching behavior of the RC members on the hysteretic 
energy dissipation in a half cycle of the structural response is considered by the parameter c . This is 
an updated version of this equation, as compared with previous studies (Fujii, 2022; Fujii and Shioda, 
2023). By substituting Eq. (A27) into Eq. (A26), the function  ( )F ff μ  is calculated as 

  ( )
( ) ( )

21 0 1
3
1 2 11 1 1
2 3 6

f f

F f

f f f
f

f
c c c

μ μ
μ

μ μ μ
μ

 ≤ ≤= 
 + − − − ≥


. (A28) 

Note that Eq. (A28) is consistent with the equation in Fujii and Shioda (2023): by substituting c  = 1 
into Eq. (A28), the same equation for the perfectly non-pinching RC MRFs (Fujii and Shioda, 2023) 
is obtained. Similarly, the contribution of the hysteretic dissipated energy of the SDCs is calculated 
using Eq (A29): 

  ( )
*

1 * *
1 1*

1

d
yd yd D d

E
A D f

M
μ μ

Δ
= . (A29) 

The function  ( )D df μ  is defined as in Eq. (A30): 

  ( ) ( )
1

0

,D d D d D Df f dμ μ η η=  . (A30) 

It is assumed that the energy dissipation of SDCs is independent of the pinching behavior of the 
surrounding RC beams, as shown in the right panel of Supplemental Figure 2. Therefore, ( ),D d Df μ η  
is calculated such that 
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 ( )

( )

( ){ }
( )

2 2

2

1 1 0 1
2

1 1, 1 1 and 0
2

11 2 1 and 1

d D d

D d D d D d d D
d

D d d D
d

f

μ η μ

μ η μ η μ μ η
μ

η μ μ η
μ


 − ≤ ≤



= − + ≥ ≤ ≤



+ − ≥ ≤ ≤


. (A31) 

By substituting Eq. (A31) into Eq. (A30), the function  ( )D df μ  is calculated as shown in Eq. (A32): 

  ( )
21 0 1

3
1 59 12 1
6

d d

D d

d d
d

f
μ μ

μ
μ μ

μ

 ≤ ≤=    − + ≥   

. (A32) 

The contribution of the viscous damping is calculated using Eq. (A33), as in Fujii and Shioda (2023): 

 
*

1 max * *1
1 max 1 max*

1

7
12

fD
f

hE A D
M

πΔ = , (A33) 

where 1 maxfh  is the damping ratio corresponding to the peak equivalent displacement ( *
1 maxD ) and 

*
1 maxfA  is the contribution of the RC MRF to the equivalent acceleration at *

1 maxD . In Fujii and Shioda 

(2023), 1 maxfh  is assumed to be proportional to the secant circular frequency of the first mode of the 

RC MRF, corresponding to *
1 maxD . Therefore, 1 maxfh  is calculated as: 

 
*

1 max 1 max
1 max 1 1*

1 1 1 1 1 max

1f f
f f f

f f

A
h h h

D
ω

ω ω
= = , (A34) 

In Eq. (A34), 1 1 fω  and 1 maxfω  are the secant circular frequency of the first mode of RC MRF 
corresponding to the initial stage and *

1 maxD , respectively. 


