

Supplementary Material

Alsanius, B.W.*, Hellström, M., Bergstrand, K.-J., Vetukuri, R.R., Becher, P. G., Karlsson. M.E. The power of light from a non-phototrophic perspective: A phyllosphere dilemma. Front. Photobiol. - Photoecology and Environmental Photobiology, 2. DOI: 10.3389/fphbi.2024.1432066

Supplementary Material S1. Exposure dose example

The exposure dose of an LED set at 660 nm at a light intensity of 500 μ mol m⁻² s⁻¹ vs and LED set at 400 nm at a light intensity of 500 μ mol m⁻² s⁻¹:

Energy of one photon

$$E = \frac{hc}{\lambda}$$

E is the energy of the photon in joules

h is Planck's constant (approx. $6.62607015 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1}$)

c is the speed of light (approx. 299792458 m s⁻¹) in a vacuum

 λ is the wavelength of the light in meters

Energy (J) of one photon of 660 nm:

$$E_{660} = \frac{6.62607015 \times 10^{-34} \times 299792458}{6.6 \times 10^{-7}}$$

$$E_{660} = 3.01 \times 10^{-7} \text{ J}$$

Energy (J) of one photon of 400 nm:

$$E_{400} = 4.97 \times 10^{-7} \text{ J}$$

Light intensity

Intensity (I) = 500 μ mol m⁻² s⁻¹

Area $(A) = 1 \text{ m}^2$ (assuming light is falling on a square meter area)

Convert intensity to photons per second:

Photons $s^{-1} = I \times A$

Photons $s^{-1} = 500 \times 10^{-6} \times 1$

Photons $s^{-1} = 5 \times 10^{-4}$

Total energy output

Total energy output = Photons $s^{-1} \times E_{photon}$

Total energy output (J m⁻² s⁻¹):

- For a 660 nm lamp at 500 μ mol m⁻² s⁻¹ = 1.50 x 10⁻²²
- For a 400 nm lamp at 500 μ mol m⁻² s⁻¹ = 2.48 x 10⁻²²

If the LEDs are switched on for 24 hours, the total exposure dose would be:

For a 660 nm lamp at 500 μ mol m⁻² s⁻¹

- = $1.50 \times 10^{-22} \times (24 \times 3600 \text{ s})$
- = $1.3 \times 10^{-17} \,\mathrm{J m^{-2}}$

For a 400 nm lamp at 500 μ mol m⁻² s⁻¹

- \bullet = 2.48 x 10⁻²² x (24 x 3600s)
- = $2.15 \times 10^{-17} \text{ J m}^{-2}$

The total exposure dose is approximate 44% lower for the 660 nm LED than for the 400 nm device.