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1 Derivation of a closed form solution to the degree preference 𝒇𝒇𝒊𝒊,𝒋𝒋 for the income 
network 

Start by writing variables 𝑌𝑌 and 𝐷𝐷 in terms of correlated standard normal variates. Namely, 𝑌𝑌 =
𝐹𝐹𝑌𝑌−1(Φ(𝑧𝑧𝑌𝑌)), and  𝐷𝐷 = 𝐹𝐹𝐷𝐷−1(Φ(𝑧𝑧𝐷𝐷)), with 𝑧𝑧𝑌𝑌 and 𝑧𝑧𝐷𝐷 connected via 𝑧𝑧𝑌𝑌 = 𝜌𝜌𝑧𝑧𝐷𝐷 + �1 − 𝜌𝜌2𝑧𝑧𝜖𝜖, 
where 𝑧𝑧𝜖𝜖 is another standard variate independent of 𝑧𝑧𝐷𝐷. Here 𝐹𝐹𝑌𝑌  and 𝐹𝐹𝐷𝐷  are cdf’s of variables 
𝑌𝑌,𝐷𝐷 and Φ is the standard normal cdf. For tractability, we treat the degree as continuous and 
approximate the final answer 𝑓𝑓𝑖𝑖,𝑗𝑗 for discrete 𝑢𝑢 and 𝑣𝑣 with its continuous counterpart. Now we 
can write the expectation in (6) as 

𝑓𝑓𝑖𝑖,𝑗𝑗 = 𝐸𝐸[𝑓𝑓 (𝐷𝐷𝑘𝑘 ,𝑌𝑌𝑘𝑘;𝐷𝐷𝑙𝑙 ,𝑌𝑌𝑙𝑙)|𝐷𝐷𝑘𝑘 = 𝑖𝑖,𝐷𝐷𝑙𝑙 = 𝑗𝑗] ∝ 𝐸𝐸 �𝑌𝑌𝑘𝑘
𝛿𝛿𝑘𝑘𝑌𝑌𝑙𝑙

𝛿𝛿𝑙𝑙�𝐷𝐷𝑘𝑘 = 𝑖𝑖,𝐷𝐷𝑙𝑙 = 𝑗𝑗�                                        (𝐴𝐴1)

= 𝐸𝐸 ��𝐹𝐹𝑌𝑌−1 �Φ�𝜌𝜌𝑧𝑧𝐷𝐷𝑘𝑘 + �1 − 𝜌𝜌2𝑧𝑧𝜖𝜖𝑘𝑘���
𝛿𝛿𝑘𝑘
�𝐹𝐹𝑌𝑌−1 �Φ�𝜌𝜌𝑧𝑧𝐷𝐷𝑙𝑙 + �1 − 𝜌𝜌2𝑧𝑧𝜖𝜖𝑙𝑙���

𝛿𝛿𝑙𝑙
�
𝑧𝑧𝐷𝐷𝑘𝑘 = Φ−1�𝐹𝐹𝐷𝐷(𝑖𝑖)�,
𝑧𝑧𝐷𝐷𝑙𝑙 = Φ−1(𝐹𝐹𝐷𝐷(𝑗𝑗))

� 

The expectation is over random variables 𝑧𝑧𝜖𝜖𝑘𝑘 and 𝑧𝑧𝜖𝜖𝑙𝑙. We have derived closed form solutions for  
𝐹𝐹𝑌𝑌  and 𝐹𝐹𝐷𝐷  in the next subsection, making the above expectation easy to compute via Monte Carlo 
simulation. One can then proceed to build the network using 𝑓𝑓𝑖𝑖,𝑗𝑗 , 𝑖𝑖 = 1, . . ,𝑀𝑀, 𝑗𝑗 = 1, . . ,𝑀𝑀 as a 
preference matrix. 

 

2 Derivation of 𝑭𝑭𝑫𝑫  and 𝑭𝑭𝒀𝒀 . 

We approximate the degree cdf via the continuous version of a power law on the interval from [0.5,𝑀𝑀 +
0.5]. Thus 𝐹𝐹𝐷𝐷 (𝑥𝑥) = 𝑃𝑃(𝐷𝐷 ≤ 𝑥𝑥) = 𝑐𝑐 ∫ 𝑢𝑢−𝜆𝜆𝑑𝑑𝑢𝑢𝑥𝑥

0.5 = 𝑐𝑐 0.51−𝜆𝜆−𝑥𝑥1−𝜆𝜆

𝜆𝜆−1
, where 𝑐𝑐 is a normalizing constant, 

determined from condition 𝑐𝑐 ∫ 𝑢𝑢−𝜆𝜆𝑑𝑑𝑢𝑢𝑀𝑀+0.5
0.5 = 1. This implies 𝑐𝑐 = 𝜆𝜆−1

0.51−𝜆𝜆−(𝑀𝑀+0.5)1−𝜆𝜆
. By inverting the cdf 

we get 𝐹𝐹𝐷𝐷−1 (𝑦𝑦) = [0.51−𝜆𝜆 − 𝜆𝜆−1
𝑐𝑐
𝑦𝑦]

1
1−𝜆𝜆. 



For the income distribution, the Pareto has a cdf 𝐹𝐹𝑌𝑌 (𝑥𝑥) = 1 − �𝑥𝑥𝑚𝑚
𝑥𝑥
�
𝜏𝜏

= 1 − 𝑥𝑥−𝜏𝜏, where 𝜏𝜏 > 0 and we 
fixed 𝑥𝑥𝑚𝑚 = 1. We find the inverse by setting 𝑦𝑦 = 𝐹𝐹𝑌𝑌 (𝑥𝑥) and solving for 𝑦𝑦, to get 𝐹𝐹𝑌𝑌−1 (𝑦𝑦) =
(1 − 𝑦𝑦)−1/𝜏𝜏. 

 

3 Visualization of networks 

We visualize both the preference, and the actual edge matrix as a ratio relative to the edge 
density of the CM network. Under CM we have 𝑒𝑒𝑖𝑖𝑗𝑗 ∝ 𝑖𝑖𝑗𝑗𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗, and this density is included for 
reference in Figure S1 of the Supplementary Material. In that figure it is interesting to notice that 
although the CM network is neutral in terms of assortativity, its edge matrix is not flat; in fact, it 
displays features of both assortative networks, such as a very high fraction of small degree pairs 
(notably (1,1)), as well as other features of disassortative networks, such as concavity and raised 
wings around (1,𝑀𝑀) and (𝑀𝑀, 1). Due to some of these features – especially a high peak at (1,1) 
– featuring prominently in most constructed graphs, displaying the ratio is sound because it 
allows for better comparison and contrast between graphs. One other issue with visualizing the 
edge matrix is a spiky appearance in matrix 𝒆𝒆, especially for high degree pairs. This is due to the 
constructed network having very few nodes with high degrees, leading to zero estimates of 𝑒𝑒𝑖𝑖𝑗𝑗 
for many entries with high 𝑖𝑖, 𝑗𝑗. To avoid this problem we smooth the matrix over square patches. 
Thus, 𝑒𝑒𝑖𝑖𝑗𝑗 will be averaged over (𝑖𝑖 ± ∆, 𝑗𝑗 ± ∆), where ∆= 1 + round( 𝑖𝑖𝑗𝑗

252
), meaning that we 

smooth over a larger area for higher degree pairs. 

We note that in Figure 1 A in the main text, the step-like appearance of the preference function 
(normalized by the CM edge density) is due to the empirical degree distribution in the network 
being a step function. For instance, there is one vertex in each degree class from 76 – 117, and 
zero vertices of higher degree. Because we are limited to integer nodes, the fractions of total 
vertices computed via the power law distribution are rounded to the nearest integer. 

 

4 Implementation details 

A couple of notes on algorithm implementation: 

(i) In the CM network construction, vertices are also categorized as unexposed (no copies 
paired), partially exposed (some but not all copies paired), and fully exposed (all copies paired). 
That algorithm proceeds by giving priority to partially exposed IDs, and matching all their copies 
before starting to match an unexposed vertex [11]. We do not do this here, as it is not a necessary 
step, but rather a matter of preference. 

 (ii) If at the end of the matching process, any stubs cannot be connected, we ignore them and 
consider the network without the leftover edges. In practice, this might happen for some stubs of 
the last one or two vertices. This will not impact processes on the network for large 𝑁𝑁, as it does 
not involve a significant fraction of nodes/edges. 



All simulations were coded in R version 4.3.2. The code is written in base R without the 
significant use of packages, except for copula generation. Network plots were generated via 
package ‘plotly’. 

In terms of algorithm complexity, generating the network takes 𝑂𝑂(𝑁𝑁𝑀𝑀2) time. Given that 𝑀𝑀 is 
dependent on 𝑁𝑁 in our implementation via the condition 𝑞𝑞𝑀𝑀𝑁𝑁 ≈ 0.5, for a power law we can 
solve for 𝑀𝑀 ∝ 𝑁𝑁1/𝜆𝜆. This makes the complexity 𝑂𝑂(𝑁𝑁1+2/𝜆𝜆). The SIR simulations take 𝑂𝑂(𝑁𝑁𝑁𝑁) 
operations, where 𝑁𝑁 is the number of time steps an epidemic lasts.  

In the SIR simulations, we consider that an epidemic enters the deterministic phase, or “takes 
off”, when 𝐼𝐼𝑡𝑡 > 5𝑛𝑛0, where 𝑛𝑛0 is the number of initial infections. There is no agreed-upon 
optimal threshold for when the epidemic has taken off, so one should take this definition to be 
good only in a comparative sense, i.e., as a way to compare networks, and not as an absolute 
characteristic of a network. We set 𝑛𝑛0 = 15 in all simulations, except those varying 𝛼𝛼, where it 
is set to 5. 
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