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APPENDIX

1 LSTM AND QLSTM DETAILS

This appendix provides details on the LSTM and QLSTM model architectures used in the
study.

1.1 LSTM

Figure 1. LSTM Circuit (11)

The LSTM architecture used in this study stacks multiple LSTM cells to model long-term
dependencies. The information flow in an LSTM cell is described by the equations:

ft = σ(Wf · vt +b f ),

it = σ(Wi · vt +bi),

Ct = tanh(WC · vt +bC),

ct = ft · ct−1 + it ·Ct ,

ht = ot · tanh(ct),

where σ denotes the sigmoid activation function, W and b are learnable parameters, f
is the forget gate, i is the input gate, C is the cell state, c is the hidden state, and o is the
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output gate. The LSTM was chosen due to its proven ability to model sequence data across
various domains. The LSTM cell architecture is illustrated as follows:

1.2 QLSTM

The QLSTM replaces LSTM cells with 6 variational quantum circuits (VQCs) to form
a quantum LSTM cell. VQCs leverage a small number of qubits and gates to represent
complex functions. This quantum layer showed quicker convergence and more stable loss
than the classical LSTM (11). The information flow in a quantum LSTM cell is described
by the equations:

ft = σ(VQC1(vt)),

it = σ(VQC2(vt)),

Ct = tanh(VQC3(vt)),

ct = ft · ct−1 + it ·Ct ,

ht = VQC5(ot · tanh(ct)).

The VQCx represent different quantum circuits used in the hybrid model. The QLSTM
cell architecture is depicted as follows:

Figure 2. Generic VQC architecture for QLSTM. It consists of three layers: the data
encoding layer (with the H, Ry, and Rz gates), the variational layer (dashed box), and the
quantum measurement layer. (11)
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Figure 3. QLSTM Circuit (11)

2 EVALUATION METHODOLOGY

This appendix provides specifics on the quantitative metrics and procedures used to evaluate
the LSTM and QLSTM model performance on the solar forecasting task.

2.1 Evaluation Metrics

The following quantitative metrics were computed to assess model accuracy:

• Mean Absolute Error (MAE): Measures average absolute difference between
predicted and actual values. Gives an indication of overall error. Lower is better.

MAE =
1
N ∑ |yi − ŷi|

• Mean Squared Error (MSE): Computes average squared difference between predicted
and actual values. More sensitive to outliers than MAE. Lower is better.

MSE =
1
N ∑(yi − ŷi)

2

• Root Mean Squared Error (RMSE): Square root of MSE. Allows interpretability in
units of the target variable. Lower is better.
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RMSE =
√

MSE

• T-statistic: The T-statistic is a measure used to determine if there is a significant
difference between the means of two groups. It is calculated as the difference between
the sample means divided by the standard error of the difference between the means.
The formula is given by:

T =
X̄1 − X̄2

sp

√
2
n

Where X̄1 and X̄2 are the sample means, sp is the pooled standard deviation, and n is
the sample size for each group.

• P-value: The p-value is a fundamental concept in hypothesis testing. It represents the
probability that the observed data (or something more extreme) would occur if the null
hypothesis were true. A smaller p-value typically indicates stronger evidence against
the null hypothesis. Conventionally, a p-value below 0.05 is considered statistically
significant.

• Effect Size (Cohen’s d): While the T-statistic tells us if there is a statistically significant
difference between groups, effect size quantifies the size of this difference. One
commonly used measure is Cohen’s d, calculated as:

d =
X̄1 − X̄2

sp

Where sp is the pooled standard deviation. Cohen’s d values can be interpreted as
small (0.2), medium (0.5), and large (0.8) effects.

These metrics were selected as standard measures of predictive accuracy for time series
forecasting problems. MAPE was included due to its interpretability for solar power
production. RMSE and R2 were used as primary metrics for model comparison.

2.2 Evaluation Procedure

Metrics were computed on scaled predictions compared to scaled actual values for both
the training and test sets. This enabled directly evaluating model generalization. Statistical
significance testing using a paired t-test on RMSE values was also conducted to assess
whether differences in LSTM and QLSTM errors were statistically significant. Model loss
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curves, prediction plots, and other visualizations were generated to provide qualitative
evaluation.

By leveraging both quantitative metrics and qualitative assessments on scaled holdout
data, this methodology enabled thoroughly evaluating how effectively the models learned to
generalize. The comparative analysis focused on assessing whether the QLSTM architecture
demonstrated significantly improved accuracy over classical LSTM for real-world solar
forecasting.
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