
   

Supplementary Material 

1 Supplementary Concepts and Equations from Section 2 of the Main Paper 

The following equations follow from Section 2 of the Main Paper and will be numbered accordingly. 

1.1 Binary Trains of MMS 

If we transform the MMS data so that the presence of a peak corresponds to the binary “1” and an 
absence of a peak corresponds to the binary “0”, we can represent normalized speed (or acceleration) 
as a stochastic binary sequence. An underlying mechanism stochastically generates bursts of activity, 
and this is equivalent to randomly generating 0s and 1s from an underlying binary alphabet as in 
Equation 2.6. 

 

𝐵𝐵𝑡𝑡 = 1, if 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘𝑡𝑡 > 𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑟𝑟ℎ𝑁𝑁𝑜𝑜𝑜𝑜                  Equation (2.6) 

 

Here the threshold of 0 value represents the empirically estimated Gamma mean, particular to the 
person within the context. Let’s assume that 𝐵𝐵𝑡𝑡 is a random sample drawn from an underlying 
probability distribution at time 𝑡𝑡. 

 

𝐵𝐵𝑡𝑡 = 1  with probability 𝑝𝑝𝑡𝑡, 0 with probability 1 − 𝑝𝑝𝑡𝑡        Equation (2.7) 

 

Entropy H in Equation 2.8 is an information theoretic measure that quantifies the amount of 
information in a random variable that follows a probability distribution 𝑁𝑁𝑥𝑥 [39] and is equal to: 

 

𝐻𝐻 =  −∑ 𝑝𝑝𝑥𝑥 𝑥𝑥 𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎 𝑝𝑝𝑥𝑥                                      Equation (2.8) 

 

In the case of the binary process, the amount of information of the random variable of an activity 
outburst (MMS) is given in Equation 2.9: 

 

𝐻𝐻𝑡𝑡 = −𝑝𝑝𝑡𝑡 𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎(𝑝𝑝𝑡𝑡) − (1 − 𝑝𝑝𝑡𝑡) 𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎(1 − 𝑝𝑝𝑡𝑡)                 Equation (2.9) 
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Which takes the maximum value of 1 when 𝑝𝑝𝑡𝑡 = 0.5 and the minimum value of 0, when 𝑝𝑝𝑡𝑡 = 0 or 1. 
Intuitively, entropy measures either the uncertainty regarding the outcome of a random realization of 
the random variable before that variable is measured or equivalently, the amount of information we get 
when we observe the variable. If we know for example, that with a 100 % chance 𝐵𝐵𝑡𝑡 = 1, the entropy 
is zero as we have no uncertainty about the outcome of the measurement, and no valuable information 
is provided to us. However, if with a 50 % chance 𝐵𝐵𝑡𝑡 = 1, the entropy is at its maximum because we 
are totally uncertain whether the outcome will be 0 or 1 and observing the outcome gives us maximal 
information, specifically, 1 bit of information in the case of a base 2 logarithm (𝑁𝑁 = 2). 

 

1.2 Measuring Randomness vs. Predictability Using Entropy Rate  

The definition of entropy can be generalized for the case of multiple random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁, 
as in equation 2.10, by considering the joint probability distribution 𝑁𝑁𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑁𝑁: 

 

𝐻𝐻(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁) = −∑ 𝑁𝑁𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑁𝑁𝑋𝑋1,𝑋𝑋2,…𝑋𝑋𝑁𝑁, loga(𝑁𝑁𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑁𝑁)            Equation (2.10) 

             

In the case of a stationary stochastic process 𝑋𝑋 (i.e., statistical properties preserved over time) which 
takes values from a discrete alphabet 𝐾𝐾 (in the case of the binary MMS), we can define the entropy 
rate of the process as in Equation 2.11: 

 

𝐻𝐻(𝑋𝑋) = 1
𝑇𝑇

lim
𝑇𝑇→∞

𝐻𝐻(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑇𝑇)                       Equation (2.11) 

 

This quantity measures how much the process changes over time, i.e., the information that is carried 
in a new value. It measures the degree of randomness (unpredictability) of the underlying dynamical 
system [39; 40; 41; 42]. 

 

1.3 Randomness for Dynamical Systems  

The concept of entropy rate is not limited to random processes, but it can also be defined in the case of 
deterministic dynamical systems. Let 𝑥𝑥𝑡𝑡 be a continuous univariate times series. Then we can construct 
a state-space representation of the process as in Equation 2.12 if we choose an appropriate dimension 
𝑜𝑜 of the presumed underlying dynamical system and an embedding delay 𝜏𝜏 [43; 44]. 
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                        Equation (2.12) 

The existence and calculations of the embedding dimension and delay are ensured by Taken’s 
embedding theorem [45]. For more information on dynamical systems theory see e.g., [46; 47].  
Essentially, any univariate time series can be viewed as being sampled from a high dimensional 
dynamical system [48]. The dynamical system follows a trajectory in the d-dimensional space defined 
by the d degrees of freedom. All possible states of the dynamical system define the phase space of the 
system.  

 

If we partition the phase space across 𝐹𝐹  dimensions, with 𝐹𝐹 ≤ 𝑜𝑜, we have an F-dimensional grid of 
cells of volume 𝑁𝑁𝐹𝐹. Then, we can measure the state of the system at constant time intervals equal to the 
embdedding delay 𝜏𝜏. We can define the joint probability 𝑝𝑝(𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑑𝑑) that  𝑋𝑋𝜏𝜏 is in cell 𝑖𝑖1, 𝑋𝑋2𝜏𝜏 is in 
cell 𝑖𝑖2,…., 𝑋𝑋𝑑𝑑𝜏𝜏 is in cell 𝑖𝑖𝑑𝑑.  The degree of “randomness” of the deterministic system can then be 
calculated using the Kolmogorov-Sinai (KS) entropy[49] using Equation 2.13:   

 

   𝐾𝐾𝐾𝐾 = − 𝑜𝑜𝑖𝑖𝑁𝑁
𝜏𝜏→0

𝑜𝑜𝑖𝑖𝑁𝑁
𝑟𝑟→0

𝑜𝑜𝑖𝑖𝑁𝑁
𝑑𝑑→ ∞

1
𝑑𝑑𝜏𝜏

 ∑ 𝑝𝑝(𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑑𝑑)𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑑𝑑 𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎   𝑝𝑝(𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑑𝑑)       Equation (2.13) 

 

The KS entropy is almost always equal to the entropy rate of the original signal 𝑥𝑥𝑡𝑡 and characterizes 
the degree of randomness of the system (and subsequently the sampled one-dimensional signal). For 
completely deterministic systems it is equal to zero and it is infinite for random systems.  

In practice, the entropy rate is approximated using what is known as the correlation integral [50] in 
Equation 2.14:  

 

 𝐶𝐶𝑑𝑑(𝑁𝑁) = 𝑜𝑜𝑖𝑖𝑁𝑁
𝑁𝑁→ ∞

1
𝑁𝑁2

[# (𝑛𝑛,𝑁𝑁), �∑ |𝑋𝑋𝑛𝑛+𝑖𝑖 − 𝑋𝑋𝑚𝑚+𝑖𝑖 |2𝑑𝑑
𝑖𝑖=1 �

1
2 ≤  𝑁𝑁 ]          Equation (2.14) 

 

i.e., the (#) number of pairs of trajectory points that are close to each within a tolerance threshold 𝑁𝑁 and 
measures the regularity (frequency) of patterns like a given template of specific length.  

It can be shown that:   
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𝑜𝑜𝑖𝑖𝑁𝑁
𝑑𝑑→ ∞,𝑟𝑟→0

1
𝜏𝜏
𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎

𝐶𝐶𝑑𝑑(𝑟𝑟)
𝐶𝐶𝑑𝑑+1(𝑟𝑟)

 ~ 𝐾𝐾2       Equation (2.15) 

 

 

Where 𝐾𝐾2 is the Renyi entropy of order 2. The Renyi entropy  𝐾𝐾𝑎𝑎 in Equation 2.16 is a generalized 
form of the usual Shannon entropy and is defined as: 

𝐾𝐾𝑎𝑎 = 1
1−𝑎𝑎

𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎 (∑ 𝑝𝑝𝑥𝑥𝑎𝑎𝑥𝑥 )                            Equation (2.16) 

We leverage these tools to calculate the entropy rate in the case of a discrete time series 𝑢𝑢(𝑛𝑛).  Consider 
two different blocks of length 𝑁𝑁 sampled from the time series:  

 

𝑥𝑥(𝑖𝑖) = {𝑢𝑢(𝑖𝑖),𝑢𝑢(𝑖𝑖 + 1) … ,𝑢𝑢(𝑖𝑖 + 𝑁𝑁 − 1)} 

𝑥𝑥(𝑗𝑗) = {𝑢𝑢(𝑗𝑗),𝑢𝑢(𝑗𝑗 + 1), …𝑢𝑢(𝑗𝑗 + 𝑁𝑁− 1)} 

And define the distance in Equation 2.17: 

 

𝑜𝑜[𝑥𝑥(𝑖𝑖),𝑥𝑥(𝑗𝑗)] = 𝑁𝑁𝑁𝑁𝑥𝑥
𝑘𝑘=1,2,…𝑚𝑚

(|𝑢𝑢(𝑖𝑖 + 𝑘𝑘 − 1) − 𝑢𝑢(𝑗𝑗 + 𝑘𝑘 − 1)|)         Equation (2.17) 

 

i.e., the maximum distance between the two vectors (Chebyshev distance). Then, we can define a 
quantity in Equation 2.18 like the correlation integral, for a template of length 𝑁𝑁 at 𝑥𝑥(𝑖𝑖) within a 
tolerance threshold r: 

 

𝐶𝐶𝑖𝑖𝑚𝑚 = # 𝑗𝑗≤𝑁𝑁−𝑚𝑚+1,𝑑𝑑[𝑥𝑥(𝑖𝑖),𝑥𝑥(𝑗𝑗)]≤𝑟𝑟
𝑁𝑁−𝑚𝑚+1

                                 Equation (2.18) 

 

Then, the entropy rate can be estimated as in Equation 2.19:                                

 

𝐸𝐸𝐸𝐸 = 𝑜𝑜𝑖𝑖𝑁𝑁
𝑟𝑟→0

𝑜𝑜𝑖𝑖𝑁𝑁
𝑚𝑚→ ∞

𝑜𝑜𝑖𝑖𝑁𝑁
𝑁𝑁→ ∞

[𝜑𝜑𝑚𝑚(𝑁𝑁) − 𝜑𝜑𝑚𝑚−1(𝑁𝑁)]                       Equation (2.19) 

                                                           

Where as in [51] Equation 2.20 gives: 
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𝜑𝜑𝑚𝑚(𝑁𝑁) = 1
𝑁𝑁−𝑚𝑚+1

 ∑ 𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎 𝐶𝐶𝑖𝑖𝑚𝑚(𝑁𝑁)𝑁𝑁−𝑚𝑚+1
𝑖𝑖=1                            Equation (2.20) 

 

Since 𝐶𝐶𝑖𝑖𝑚𝑚(𝑁𝑁) is essentially the probability that any sequence of length 𝑁𝑁 is very close to the template 
sequence at time 𝑖𝑖, and 𝐶𝐶𝑖𝑖𝑚𝑚−1(𝑁𝑁) the probability that the same holds true for sequences of length 𝑁𝑁 −
1, then 𝐶𝐶𝑖𝑖

𝑚𝑚(𝑟𝑟)
𝐶𝐶𝑖𝑖
𝑚𝑚−1(𝑟𝑟)

 is the conditional probability that any sequence of length 𝑁𝑁 is very close to the template 

of length 𝑁𝑁 at time 𝑖𝑖 given that the same holds true for 𝑁𝑁 − 1. Then 𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎 �
𝐶𝐶𝑖𝑖
𝑚𝑚(𝑟𝑟)

𝐶𝐶𝑖𝑖
𝑚𝑚−1(𝑟𝑟)� = 𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎�𝐶𝐶𝑖𝑖𝑚𝑚(𝑁𝑁)� −

𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎 (𝐶𝐶𝑖𝑖𝑚𝑚−1(𝑁𝑁))  the logarithm of this conditional probability. It is easy to see that 𝜑𝜑𝑚𝑚(𝑁𝑁) − 𝜑𝜑𝑚𝑚−1(𝑁𝑁) 
is the average over 𝑖𝑖 of the logarithm of this conditional probability [49].  

 

However, due to finite sample sizes and stochasticity in time series analysis, the entropy rate can be 
estimated by what is known as Approximate Entropy (ApEn) [46] and is given by Equation 2.21: 

 

𝐴𝐴𝑝𝑝𝐸𝐸𝑛𝑛(𝑁𝑁, 𝑁𝑁,𝑁𝑁)(𝑢𝑢) = 𝜑𝜑𝑚𝑚 − 𝜑𝜑𝑚𝑚−1                                   Equation (2.21) 

 

Where 𝑁𝑁 is the length of the time series 𝑢𝑢(𝑛𝑛), 𝑁𝑁 is the choice of the length template and 𝑁𝑁 is the 
threshold tolerance choice. Approximate entropy measures the logarithmic frequency with which 
segments of length 𝑁𝑁 that are very close together (according to the threshold), stay together through 
time.  

 

An approximate formula for ApEn, which we implemented in our study is given by Equation 2.22: 

 

𝐴𝐴𝑝𝑝𝐸𝐸𝑛𝑛(𝑁𝑁, 𝑁𝑁,𝑁𝑁) ≅ 1
𝛮𝛮−𝑚𝑚

∑ 𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎
∑ [# 𝑗𝑗,𝑑𝑑[|𝑥𝑥𝑚𝑚+1(𝑗𝑗)−𝑥𝑥𝑚𝑚+1 (𝑖𝑖)|]<𝑟𝑟]𝑁𝑁−𝑚𝑚
𝑗𝑗=1

∑ [# 𝑗𝑗,𝑑𝑑[|𝑥𝑥𝑚𝑚(𝑗𝑗)−𝑥𝑥𝑚𝑚 (𝑖𝑖)|]<𝑟𝑟]𝑁𝑁−𝑚𝑚
𝑗𝑗=1

𝑁𝑁−𝑚𝑚
𝑖𝑖=1           Equation (2.22) 

 

1.4 Entropy Rate estimation for a binary MMS speed sequence  

Generally, in the case of discrete alphabet sequences with 𝑘𝑘 symbols,  0 ≤  𝐴𝐴𝑝𝑝𝐸𝐸𝑛𝑛 ≤ 𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎 𝑘𝑘                                   
   

Where 𝐴𝐴𝑝𝑝𝐸𝐸𝑛𝑛 = 0 for deterministic time series and 𝐴𝐴𝑝𝑝𝐸𝐸𝑛𝑛 = 𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎 𝑘𝑘 for random series. 
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In our case (binary MM series), 𝑘𝑘 = 2 and  0 ≤ 𝐴𝐴𝑝𝑝𝐸𝐸𝑛𝑛𝑀𝑀𝑀𝑀 ≤ 𝑜𝑜𝑁𝑁𝑔𝑔𝑎𝑎 2                                  
  

For 𝑁𝑁 = 𝑁𝑁 (natural logarithm choice), the maximum value is 𝑜𝑜𝑛𝑛(2) = 0.69, which is the base we use 
in this study [49].  

 

A good choice of 𝑁𝑁 is equal to the embedding dimension, which can be estimated using the False 
Nearest Neighbor (FNN) algorithm[52]. Usually, 𝑁𝑁 is of low dimension, in our case the dimension of 
the data was estimated to be 2. The threshold 𝑁𝑁 is usually set between 0.1 to 0.25 standard deviations 
of the time series [49]. 

 

1.5 Quantifying Information Flow Between Binarized MMS with Local Transfer Entropy 

Local Shannon Entropy is defined in Equation 2.23 as the negative logarithm of the probability of an 
outcome 𝑥𝑥 of a random variable [53]: 

 

ℎ(𝑥𝑥) = − 𝑜𝑜𝑁𝑁𝑔𝑔2 𝑝𝑝(𝑥𝑥)                                              Equation (2.23) 

 

where low probability outcomes carry more information than high probability outcomes. Entropy as 
defined in Equation 2.24 can then be expressed as the average value of all such outcomes: 

 

𝐻𝐻(𝑋𝑋) = 𝐸𝐸[ℎ(𝑥𝑥)] = −∑ 𝑝𝑝(𝑥𝑥) 𝑜𝑜𝑁𝑁𝑔𝑔2 𝑝𝑝(𝑥𝑥)𝑥𝑥                                 Equation (2.24) 

 

Where 𝐸𝐸[. ] is the expectation (average) operator. An estimator based on samples 𝑥𝑥𝑛𝑛 is given by 
Equation 2.25: 

 

𝐻𝐻(𝑥𝑥) ≅ 1
𝑁𝑁
∑ ℎ(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1                                           Equation (2.25) 

 

The Local Mutual Information 𝑖𝑖(𝑥𝑥;𝑦𝑦) and Mutual Information (MI) 𝐼𝐼(𝑋𝑋;𝑌𝑌) are respectively defined 
in Equations 2.26 and 2.27, [54]: 
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𝑖𝑖(𝑥𝑥;𝑦𝑦) = 𝑜𝑜𝑁𝑁𝑔𝑔2
𝑝𝑝�𝑥𝑥�𝑦𝑦�
𝑝𝑝(𝑥𝑥)

= ℎ(𝑥𝑥) − ℎ(𝑥𝑥|𝑦𝑦)                                     Equation (2.26) 

 

𝐼𝐼(𝑋𝑋;𝑌𝑌) = 𝐸𝐸[𝑖𝑖(𝑥𝑥;𝑦𝑦)]         Equation (2.27) 

 

Equation 2.27 quantifies the information that we gain when observing 𝑋𝑋 after we have already observed 
another variable 𝑌𝑌. 

 

Similarly, the Local Conditional Mutual Information and Conditional Mutual Information are given by 
Equations 2.28 and 2.29 respectively, [54]: 

𝑖𝑖(𝑥𝑥;𝑦𝑦|𝑧𝑧) = 𝑜𝑜𝑁𝑁𝑔𝑔2
𝑝𝑝�𝑥𝑥�𝑦𝑦, 𝑧𝑧�
𝑝𝑝(𝑥𝑥|𝑧𝑧) = ℎ(𝑥𝑥|𝑧𝑧) − ℎ(𝑥𝑥|𝑦𝑦, 𝑧𝑧)                          Equation (2.28) 

 

𝐼𝐼(𝑋𝑋;𝑌𝑌|𝑍𝑍) = 𝐸𝐸[𝑖𝑖(𝑥𝑥;𝑦𝑦|𝑧𝑧)]        Equation (2.29) 

 

It quantifies the information that we gain when we observe 𝑋𝑋 after considering both 𝑌𝑌 and 𝑍𝑍 versus 
considering only 𝑍𝑍. 

Finally, local transfer entropy quantifies the flow of information from Y to X and is defined in Equation 
2.30, [55; 56]: 

 

𝑡𝑡𝑌𝑌→𝑋𝑋(𝑛𝑛 + 1,𝑘𝑘, 𝑜𝑜,𝑢𝑢) = 𝑖𝑖(𝒚𝒚𝑛𝑛+1−𝑢𝑢
(𝑙𝑙) ; 𝑥𝑥𝑛𝑛+1|𝒙𝒙𝑛𝑛

(𝑘𝑘))                             Equation (2.30) 

 

Where 𝑜𝑜 and 𝑘𝑘 denote the length of the vectors 𝒚𝒚𝑛𝑛+1−𝑢𝑢
(𝑙𝑙) = {𝑦𝑦𝑛𝑛+1−𝑢𝑢−𝑙𝑙+1, … ,𝑦𝑦𝑛𝑛+1−𝑢𝑢−1,𝑦𝑦𝑛𝑛+1−𝑢𝑢} (storing 

past information of the process Y with a memory of 𝑜𝑜 samples up to point 𝑛𝑛 + 1 − 𝑢𝑢) and 𝒙𝒙𝑛𝑛
(𝑘𝑘) =

{𝑥𝑥𝑛𝑛−𝑘𝑘+1, … , 𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛}.  

 

The integer 𝑢𝑢 denotes the source-destination lag, i.e., the causal time delay between 𝑌𝑌 and 𝑋𝑋 that we 
are interested in when we want to calculate the transfer entropy from 𝑌𝑌 to 𝑋𝑋. For 𝑢𝑢 = 1, a typical choice 
of source-destination lag is given by Equation 2.31: 

𝑡𝑡𝑌𝑌→𝑋𝑋(𝑛𝑛 + 1,𝑘𝑘, 𝑜𝑜) = 𝑖𝑖(𝒚𝒚𝑛𝑛
(𝑙𝑙); 𝑥𝑥𝑛𝑛+1|𝒙𝒙𝑛𝑛

(𝑘𝑘))                                        Equation (2.31) 
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The local transfer entropy is the mutual information between Y and the future state of X, 𝑢𝑢 samples 
ahead, conditioned on the history of X. In other words, it measures the information gained that we get 
about the future state of X when considering both its own past and the past states of Y versus 
considering only its past state.  Transfer entropy is the expected information gain, averaging over all 
states given by Equation 2.32, [53; 55]: 

𝑇𝑇𝑌𝑌→𝑋𝑋(𝑘𝑘, 𝑜𝑜) = 𝐸𝐸[𝑡𝑡𝑌𝑌→𝑋𝑋(𝑛𝑛 + 1,𝑘𝑘, 𝑜𝑜)]                                           Equation (2.32) 

 

1.6 Quantifying Autonomy of an Agent from the Perspective of the Observer  

For a child/clinician dyad, we obtain the normalized MMS derived from the fluctuations in angular 
speed from the right- and left-wrist sensors throughout the course of the dyadic interaction. Then, we 
calculate the entropy rate for consecutive non-overlapping time windows, small enough to ensure 
stationarity but not too small, as to ensure convergence. Time windows must also ensure tight 95% 
confidence intervals in determining Gamma parameters according to MLE. We calculate the entropy 
rate both for the normalized MMS and for the corresponding binary MMS trains that we obtain by 
setting peak values to “1” and zero values to “zero”.  

 

To estimate the entropy rate we used Approximate entropy ApEn (developed by Steve M. Pincus [57]), 
which measures the amount of regularity or unpredictability of fluctuations over time-series data that 
have lengths compatible with experimental settings (unlike other measures of entropy aimed at 
measuring regularity but requiring very long times). There are caveats to the use of the ApEn algorithm 
[49]:  

i. The ApEn algorithms allows self-counting when counting the number of templates that are 
similar to a given data segment, which helps avoid the occurrence of log (0) in the calculation.  

ii. However, when the self-similarity threshold 𝑁𝑁 is very small, the template vector coincides only 
with itself, giving ApEn low values, indicating regularity when the system may in fact, be very 
irregular.    

iii. ApEn is biased by a factor of 1
𝑁𝑁−𝑚𝑚

, which means that it depends on the template length and data 
stream length.  

ApEn generally depends on the threshold 𝑁𝑁, and the embedding delay and embedding dimension of the 
reconstructed space (which is equal to the template length). It is generally suggested, that in order to 
compare the approximate entropies of different time series, all parameters must be equal. However, for 
the scope of our study, we chose the threshold parameter 𝑁𝑁 to be equal to 0.2𝜎𝜎, as recommended in the 
literature [49]. The embedding delay was chosen according to the minimum Average Mutual 
Information criterion, to ensure maximum novelty between consecutive samples in the reconstructed 
space. As for the template, we chose it to be 1/𝐸𝐸, where 𝐸𝐸 is the average rate (frequency) of MMS in 
the time window of interest. This equals to the average time-distance between two spikes and our 
choice ensures that in the reconstructed space, the coordinates of a point in time include both zeros 
(“quiet moments”) and activity spikes and that the system does not bounce back and forth from a single 
coordinate of zeros components. In this way, we can minimize any bias introduced by differences in 
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spike rates, in the computation of self-similarity by the algorithm. Sparser time windows will contain 
the same percentage of “active” moments as denser time windows. Since it turns out that, for our 
datasets, 0.1 < 𝐸𝐸 < 0.5, we have 2 < 𝑁𝑁 < 10, which according to the literature is within the optimal 
range [49]. Moreover, since 𝑁𝑁 = 1000, the bias introduced by 𝑁𝑁 in the prefactor is very small.  

ApEn is computationally efficient. One can easily see that the worst-case time complexity of ApEn is 
𝑂𝑂(𝑁𝑁2). Furthermore, it has lower effect from noise in the data. If data is noisy, the ApEn measure can 
be compared to the noise level in the data to determine what quality of true information may be present 
in the data [49]. We here notice the difference between the criterion for randomness in the Gamma 
parameter space, when the shape is 1, which is the special case of the memoryless exponential 
distribution. In our empirical characterization of the MMS from the peak fluctuations, which follow a 
scaling power law, as the shape approaches the value of 1 representing the exponential distribution 
case, the 𝑁𝑁𝐾𝐾𝐸𝐸 = 𝑜𝑜𝑁𝑁𝑔𝑔𝜃𝜃 approaches its maximum levels [3]. The differential entropy for the Gamma 
distribution has the general form in Equation 2.33, [58]: 

 

ℎ�𝑋𝑋𝑔𝑔� = 𝑘𝑘 + 𝑜𝑜𝑁𝑁𝑔𝑔𝜃𝜃 + log𝛤𝛤(𝑘𝑘) + (1 − 𝑘𝑘)𝜓𝜓(𝑘𝑘)     Equation (2.33) 

 

We will show later that discrete samples 𝑋𝑋𝐺𝐺 that follow the Gamma distribution, such as the MMS, 
have entropy roughly equal to ℎ�𝑋𝑋𝑔𝑔� − 𝑜𝑜𝑁𝑁𝑔𝑔𝛥𝛥, when 𝛥𝛥, is the discretization step. Because of the Power 
Law discussed before, 𝑜𝑜𝑁𝑁𝑔𝑔(𝑘𝑘) = 𝑁𝑁 + 𝑏𝑏 𝑜𝑜𝑁𝑁𝑔𝑔(𝜃𝜃) + 𝜀𝜀, we have in Equation 2.34: 

 

𝐻𝐻(𝑋𝑋𝐺𝐺) ≅ 𝑁𝑁𝑎𝑎+𝜀𝜀𝑁𝑁𝑏𝑏𝑁𝑁𝑏𝑏𝑏𝑏 + 𝑁𝑁𝐾𝐾𝐸𝐸 + log𝛤𝛤(𝑘𝑘) + (1 − 𝑘𝑘)𝜓𝜓(𝑘𝑘) − 𝑜𝑜𝑁𝑁𝑔𝑔𝛥𝛥         Equation (2.34) 

 

As the NSR increases, 𝑘𝑘 → 1 and thus, 𝐻𝐻(𝑋𝑋𝐺𝐺) → 𝑁𝑁𝑎𝑎+𝜀𝜀𝑁𝑁𝑏𝑏𝑁𝑁𝑏𝑏𝑏𝑏 + 𝑁𝑁𝐾𝐾𝐸𝐸 + 1 − 𝑜𝑜𝑁𝑁𝑔𝑔𝛥𝛥 . In Section 4, we 
will experimentally show that, for 𝑜𝑜𝑁𝑁𝑔𝑔𝜃𝜃 < 1 in Equation 2.35: 

 

𝐻𝐻(𝑋𝑋𝐺𝐺) = 𝑂𝑂(𝑁𝑁𝐾𝐾𝐸𝐸),𝑘𝑘 →  1               Equation (2.35) 

 

However, in the case of ApEn, we consider a process of the form 𝑋𝑋𝐺𝐺 ∗ 𝑋𝑋𝐵𝐵𝑡𝑡 , where 𝑋𝑋𝐵𝐵𝑡𝑡  is the binary spike 
series, determining the temporal distribution of the peaks in time. In fact, we will empirically 
demonstrate that 𝑋𝑋𝐵𝐵𝑡𝑡  is almost independent from 𝑋𝑋𝐺𝐺, implying that ApEn measures the information 
content of the binary spike time series, characterizing the motor code. On the other hand, randomness 
in the sense of 𝑁𝑁𝐾𝐾𝐸𝐸 (or equivalently 𝐻𝐻(𝑋𝑋𝐺𝐺)), refers to the temporal component of the events and 
answers the question of predictability (future events) in time, whereby predicting future events in time 
does not benefit from knowledge of prior or current event times. We will see later that these two 
elements of the Gamma distributed MMS are indeed separable and within the current context, tend to 
be orthogonal.  
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In this sense, we propose that the entropy rate (ER) derived from ApEn is a measure to characterize 
motor autonomy in the system. Since ER is a proper way to quantify regularity vs. randomness, we can 
safely presume that the information levels that it carries also measures the ability of an observer to 
predict the motor behavior of an agent, when the two of them engage in a dyadic social interaction. For 
example, when the clinician observes the behavior of a child that engages in repetitive and predictable 
motions, they can easily learn to predict their behavioral and motor patterns. This also implies that they 
can more easily detect when the child behaves predictably in a certain way and set up the context to 
better control the situation. Perhaps the child is in distress trying to self-sooth through repetitive 
movements. In this sense, the more predictable the situation is, the more control it will be afforded by 
the external agent to e.g., help regulate the child.  

 

2 Clinical Aspects of the Study 

2.1 The Autism Diagnostic Observation Schedule (ADOS-2) Scoring System  

The ADOS-2 Modules consist of tasks that the clinician performs with the child to observe behavior 
related to the diagnosis of ASD and reach a conclusion. There are different Modules. Each child is 
administered a single Module based on their expressive language level, developmental age and their 
unique interests and abilities. However, they are designed in such a way that ensures that judgements 
about social and communicative abilities are as independent as possible from level of language ability 
and chronological age.  

 

Both Modules (toddler) T and 1 are administrated to non-speaking children, Module T for ages 12-30 
months and Module 1 for children over 31 months. Module 2 is administrated to children of all ages 
who are using phrase speech but are not yet speaking with fluency. Modules 3 and 4 are administrated 
to individuals that are speaking with verbal fluency, with Module 3 specifically designed for Children 
/ Younger adolescents that can still play with action figure-type toys and Module 4 for older adults. 
All Modules are administrated under the assumption that the individual can walk independently, has 
no motor issues and is free of visual or hearing impairments. These assumptions are erroneous, as they 
do not consider known prolonged temporal delays in sound processing since birth [18] or subtle 
involuntary motor control issues present across the spectrum of autism and ADHD [13; 36; 38; 59; 60]. 
However, we use the ADOS-2 test not to diagnose but to evoke social situations leading to movement 
patterns likely present in such situations.  

Our current analysis focuses on Modules 1,3 and 4. We suggest the following categorization of tasks 
to better relate our digital biomarkers to the clinical tasks that evoke some aspect of social interactions 
and emotions present in human gestural communication, which is mediated by movements: 

 

Socio-Motor Tasks:  These are tasks that engage interactive movements within the child, the clinician, 
and jointly between the child and clinician. Construction Task, Joint Interactive Play, Demonstration 
Task, Cartoons, Conversation and Reporting and Break Tasks all have in common the Child’s Socio-
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Motor behavior involvement. Construction Task consists of an interaction between the Clinician and 
Child that involves reaching over the Clinician’s arm to ask for block pieces that may form a shape. 
Joint Interactive Play consists of a Play Sequence between the Child and the Clinician that involves 
body movements. During Demonstration Task the Child uses their body to represent objects and mime 
the use of each object. During Cartoon Task, the Clinician observes the Child’s gestures and 
coordination with speech. Similarly, during Conversation and Reporting body language and facial 
expressions / gestures are observed alongside general communicative skills. During Break the Child is 
expected to move around the room, perhaps eat a snack or drink water, etc.  

 

Emotional Tasks: These are tasks that probe the child’s emotional states. Emotions, Social Difficulties, 
Friends, Relationships, and Marriage and Loneliness all evoke strong emotional responses from the 
Child. During the Emotions Task, the Child is asked questions about social relationships, different 
emotions such as happiness, fear and anxiety and details about the manifestation of these emotions 
under different circumstances. Social Difficulties and Annoyance consist of questions related to social 
interactions at school or work, such as bullying or teasing. Friends, Relationships, and Marriage are 
designed to evaluate the Child’s concepts on topics such as friendship and social relationships and the 
questions asked can cause strong emotions in the Child. Similarly, during Loneliness task, questions 
are asked about the concept of loneliness, which is a heavy topic, especially for Children on the Autism 
Spectrum, that struggle with social rejection and bullying from a young age.  

 

Abstract Tasks: These are tasks that require higher, abstract level of cognition. Make-Believe Play, 
Description of a Picture, Telling Story from a Book, and Creating a Story all help observe higher 
cognitive skills. Make-Believe Play involves the use of dolls an action figures and the Child is tested 
for their ability to perceive them as animate beings and produce imaginative sequences of actions that 
involve these objects. Perception or the lack of it of objects as animate beings is a concept frequently 
encountered within the context of the Theory of Mind. During Description of a Picture Task the 
Clinician observes the Child’s use of language/ communication and the level of interest in the picture 
presented. Telling a Story from a Book is similar but involves a story from a book instead of a picture 
and humor and presumption of the feelings of the characters from the book are evaluated as well.  

After the administration of Module 3 a scoring system is used to evaluate the levels of Social Affect 
(SA) and Restricted and Repetitive Behavior (RRB). The scores are added up to determine a final 
score, from 0 to 10. A score of 0 or 1 indicates Minimal to No Evidence of ASD related symptoms, 
scores between 2 and 4 indicate a Low Level of symptoms related to ASD, 5 to 7 Moderate and 8 to 
10 High. A score of 9 or more determine that the Child is Autistic whereas a score of 7 of more that 
the Child is in the Autism Spectrum.  Furthermore, Social Affect consist of Communication (Reporting 
of Events, Conversation and Descriptive, Conventional, Instrumental, or Informational Gestures) and 
Reciprocal Social Interaction (Unusual Eye Contact, Facial Expression Directed to Examiner, Shared 
Enjoyment in Interaction, Quality of Social Overtures, Amount of Reciprocal Social Communication, 
Overall Quality of Rapport) Scorings. RRB consists of scoring Stereotyped/ Idiosyncratic Use of 
Words or Phrases, Unusual Sensory Interest in Play Material/ Person, Hand and Finger and Other 
Complex Mannerisms and Excessive Interest or Highly Specific Topics/ Objects or Repetitive 
Behaviors.  
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3 Supplementary Figures 

 

Supplementary Figure 1. The Micro-Movement Spikes (MMS) computation pipeline. First, the 
empirical mean is obtained from the peaks in the original time series data, using maximum 
likelihood estimation (MLE). Then, absolute deviations from the empirical mean are obtained and 
the time series of these deviations used. Here notice that the time stamps of the original time series 
are retained, as all points in the original time series are used. The local maxima (peaks) are then 
normalized by their local average. This is obtained from the average of all points between the two 
adjacent local minima (as in the formula over the arrow). Finally, we obtain the standardized MMS 
series. This is a scalar value at each point of the time series which has now been corrected for 
allometric effects due to anatomical disparities across participants. The normalized quantity allows 
us to compare the fluctuations in motion parameters across children of different ages and different 
body sizes. Importantly, the 0-values in the MMS are “quiet moments” of the body part being 
measured, representing baseline average activity (according to the empirically estimated mean 
value), while the values of the MMS away from 0 represent bursts of activity above the baseline 
average activity of the person and context. In this sense, the MMS allow for a personalized 
approach to movement analysis and provide the means to obtain nuance information for the same 
type of motion (for the same motor program being learned or being deployed) across different 
contexts and situations. 
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Supplementary Figure 2. The standardized Micro-Movement Spikes are best fit by the 
continuous Gamma family of probability distributions found to bests characterize the moment-by-
moment fluctuations in human motion (in an MLE sense). The shape and the scale parameters of 
the Gamma distribution from the MMS follow a power law relationship, whereby knowing the 
scale predicts the shape, and vice versa. This scaling relation on the log-log Gamma parameter 
plane, has been confirmed by different studies assessing a multitude of biorhythmic parameters, 
spanning from the autonomic, reflexive, involuntary, spontaneous, automatic and voluntary levels 
of motor function. In the Gamma family, the scale parameter is equal to the Noise-to-Signal ratio, 
the NSR (the Gamma variance over the Gamma mean). For stochastic regimes of low NSR, the 
distribution asymptotically converges to a Gaussian like symmetric shape, whereas for systems 
with high noise, the distribution tends to the memoryless Exponential regime. While in the former 
prior information can be predictive of present or even future events, in the latter, the information is 
in “the here and now” with no predictive power of prior events towards present or future events. 
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Supplementary Figure 3. Sensors positioning on the child and clinician. Sensors represented in 
green are the APDM Opals, Portland Oregon, sampling at 128Hz. They output triaxial acceleration 
through inertial measurement units (IMUs), triaxial angular velocity (through a gyroscope) and 
temperature through temperature sensors.  The data from the gyroscopes was used in the present 
study, using the angular speed time series. The orange sensors are from the Polhemus Liberty 
Latus (Colchester, Vermont) sampling at 188Hz. We did not use these data in the present study. 
The four scenes are frames from the video recording during the ADOS performance. They reflect 
different tasks and conversational segments of the research grade ADOS test. 
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