Supplementary material

A review of *Phyllanthus urinaria* L. in the treatment of liver disease: viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma

Linhua Liu 1,2[†], Bing Wang 1[†], Yibo Ma 1, Kunhui Sun 1, Ping Wang 1, Meifang Li 1, Junlin Dong 1, Meirong Qin 1, Mingshun Li 3, Chunshan Wei 3, Ying Tan 2^{*}, Jinsong He 3^{*}, Keying Guo 4^{*}, Xie-an Yu 1^{*}

1 NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China.

2 State Key Laboratory of Chemical Oncogenomics , Institute of

Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China

3 Department of Biotechnology and Food Engineering, Guangdong-Technion Israel Institute of Technology, Shantou, 515063, China.

4 Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China.

* Corresponding author:

Xie-an Yu, Shenzhen Institute for Drug Control, Shenzhen 518057, China. E-mail address: <u>yuxieanalj@126.com</u>

Keying Guo, Guangdong-Technion Israel Institute of Technology, Shantou, 515063, China. E-mail address: <u>keying.guo@gtiit.edu.cn</u>

Jinsong He, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China. E-mail address: <u>hjsprayforyou@sina.com</u>

Ying Tan, State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China. E-mail address: tan.ying@sz.tsinghua.edu.cn

Supplementary Tables

	Metabolites	CAS NO.	Molecular formula	Molecular weigh	References
Flavonoids					
	Rhamnocitrin	569-92-6	$C_{16}H_{12}O_{6}$	300.26	Qi et al., 2014, Fang et al., 2008
	Quercetin 3-O-β-D-glucoside	21637-25-2	C21H20O12	464.376	Qi et al., 2014, Xu et al., 2007
	Quercetin 3-rutinoside	949926-49-2	C27H30O16	610.518	Fang et al., 2008
	Rutin	153-18-4	C27H30O16	610.518	Qi et al., 2014, Fang et al., 2008, Xu et al., 2007
	Isoquercitrin	482-35-9	$C_{21}H_{20}O_{12}$	464.376	Mao et al., 2016
	Quercetin	1260088 72 8	CarllarOu	462 403	Map at al. 2016. Wu at al. 2013
	3-O-α-L-rhamnopyranoside	1209988-72-8	C22H22O11	402.403	Mao et al., 2010, wu et al., 2015
	Quercetin 3-(4'-acetylrhamnoside) 7-rhamnoside	17306-45-5	C27H30O16	610.52	Han et al., 2023a
	Epigallocatechin	970-74-1	C15H14O7	306 267	Han et al 2023a
	Astragalin	480-10-4	C21H20O11	448 377	Calixto et al. 1998
	Quercetin	117-39-5	C15H10O7	302.236	Calixto et al., 1998, Wang and Lee, 2005, Wu et al., 2013
	Quercitrin	522-12-3	C21H20O11	448.377	Calixto et al., 1998, Fang et al., 2008
	Kaempferol	520-18-3	C15H10O6	286.236	Calixto et al., 1998
	Urinariaflavone	/	C18H16O9S	407.04368	Thanh et al., 2014
	Quercetin 3- <i>O</i> -α-L-(2,4-di- <i>O</i> -acetyl)				
	rhamnopyranoside-7-O-α-L-rhamno	/	C ₃₁ H ₃₄ O ₁₇	679.1874	Wu et al., 2013
	pyranoside				
	Quercetin 3- <i>O</i> -α-L-(3,4-di- <i>O</i> -acetyl)				
	rhamnopyranoside-7-O-α-L-rhamno	/	C ₃₁ H ₃₄ O ₁₇	679.1874	Wu et al., 2013
	pyranoside				
Lignans					
	Phyltetralin	123048-17-9	C24H32O6	416.51	Qi et al., 2014, Fang et al., 2008, Wang and Lee, 2005, Chang et al., 2003
	Heliobuphthalmin lactone	580-73-4	$C_{20}H_{18}O_6$	354.35332	Qi et al., 2014, Chang et al., 2003
	Hypophyllanthin	33676-00-5	C24H30O7	430.491	Sarin et al., 2014, Wang and Lee, 2005, Fan
	Nirtetralin	50656-78-5	C24H30O7	430.491	et al., 2015, Chang et al., 2005 Sarin et al., 2015, Chang et al., 2003
	Dihydrocubebin	24563-03-9	C20H22O6	358.385	Hu et al., 2014
	(7S,7'S,8R,8'R)-icariol A2	161657-71-2	C22H28O9	436.452	Hu et al., 2014
	Evofolin B	1961305-60-1	C17H18O6	318.321	Hu et al., 2014
	Episyringaresinol	51152-20-6	$C_{22}H_{26}O_8$	418.44	Hu et al., 2014
	Boehmenan	57296-22-7	C40H40O12	712.74	Han et al., 2023a
	Isolintetralin	145459-30-9	C23H28O6	400.465	Mao et al., 2016, Chang et al., 2003

Table S1 Isolation and information of metabolites from *Phyllanthus urinaria* L.

	T T T T	50001 44 4	<i>a</i> u o	100 165	Mao et al., 2016, Wang and Lee, 2005,
	Lintetralin	/3231-44-4	C23H28O6	400.465	Chang et al., 2003
	Nizonthin	50656 77 4	C. H.O.	422 507	Mao et al., 2016, Wang and Lee, 2005, Fan
	Ivitantini	50050-77-4	C24113207	432.307	et al., 2015,
	Phyllanthin	10351-88-9	$C_{24}H_{34}O_6$	418.523	Mao et al., 2016
	Virgatusin	176050-44-5	C23H28O7	416.46	Wang and Lee, 2005, Chang et al., 2003
Tannins					
	Corilagin	23094-69-1	C27H22O18	634 453	Mao et al., 2016, Xu et al., 2007, Zhong et
	Connight	25074 07 1	02/11/2/016	034.435	al., 2013, Jikai et al., 2002, He et al., 2022
	Geraniin	60976-49-0	C41H28O27	952.645	Mao et al., 2016, Zhong et al., 2013
	Hippomanin A	52934-78-8	$C_{27}H_{22}O_{18}$	634.453	Mao et al., 2016
	Isostrictinin	84316-77-8	C27H22O18	634.453	Mao et al., 2016, Han et al., 2023a
	Phyllanthusiin A	142705-58-6	$C_{41}H_{28}O_{27}$	952.645	Han et al., 2023a
	Phyllanthusiin D	133145-19-4	$C_{44}H_{32}O_{27} \\$	992.709	Han et al., 2023a
	1.3.4.6-tetra-O-gallovl-B-D-glucose	26022-00-6	CatHaon	788 58	Zhong et al., 2013, Yang et al., 2007ab,
	1,5,4,0-tetta-O-ganoy1-p-D-grucose	20922-99-0	C341128022	788.38	Yang et al., 2007b
	Gemin D	84744-46-7	C27H22O18	634.453	Zhong et al., 2013
Phenolic					
acids					
	Furosin	81552-37-6	C27H22O19	650.452	Xu et al., 2007
	Mallotinin	125445-51-4	$C_{41}H_{30}O_{28} \\$	970.66	Xu et al., 2007
	Repandusinic acid A	125516-10-1	C41H30O28	970.66	Xu et al., 2007
	Ferulic acid	1135-24-6	$C_{10}H_{10}O_4$	194.184	Hu et al., 2014, Deng et al., 2012
	Repandinin B	/	/	/	Xu et al., 2007
	Dehydrochebulic acid trimethyl ester	154702-77-9	C17H16O11	396.302	Hu et al., 2014
	3,5-Dihydroxy-4-methoxybenzoic	4319-02-2	C•H•Os	184 146	Mao et al. 2016 Hu et al. 2014
	acid	1017 02 2	0,11,00	1010	
	Methyl gallate	99-24-1	C8H8O5	184.146	Qi et al., 2014, Fang et al., 2008
	Protocatechuic acid	99-50-3	$C_7H_6O_4$	154.12	Qi et al., 2014, Xu et al., 2007
	2,3,4,5,6-Pentahydroxybenzoic acid	145279-23-8	C7H6O7	202.118	Qi et al., 2014
	Syringin	118-34-3	C17H24O9	372.367	Qi et al., 2014, Xu et al., 2007
	Brevifolin carboxylic acid	18490-95-4	$C_{13}H_8O_8$	292.198	Qi et al., 2014, Xu et al., 2007
	3,3',4'-Tri-O-methylellagic acid	5145-53-9	C17H12O8	344.27	Qi et al., 2014
	Fillagic acid	176-66-1	CuHO	302 193	Qi et al., 2014, Jikai et al., 2002, Guo et al.,
	Linagic acid	470-00-4	C1411608	502.175	2021
	Phyllanthurinolactone	168180-12-9	C14H10O	31/ 288	Qi et al., 2014, Mao et al., 2016, Urakawa et
	1 hynandianioraetone	100100-12-7	014111808	514.200	al., 2004
	Brevifolin	477-94-1	C12H8O6	248.188	Mao et al., 2016
	Gentisic acid	1820-89-9	CisH.O.	316 261	Xu et al. 2007
	4-O-β-D-glucopyranoside	1020-07-7	C131116O9	510.201	Au et al., 2007
	p-Hydroxybenzaldehyde	123-08-0	C7H6O2	122.121	Mao et al., 2016, Hu et al., 2014
	Pyrogallol	87-66-1	C6H6O3	126.11	Mao et al., 2016
	Hexacosanoic acid	506-46-7	C26H52O2	396.69	Calixto et al., 1998
	Gallic acid	149-91-7	C7H6O5	170.12	Calixto et al., 1998, Xu et al., 2007

	Gallic acid ethyl ester	831-61-8	C9H10O5	198.17	Santos et al., 1999, Paulino et al., 1999
	Caffeic acid	331-39-5	$C_9H_8O_4$	180.16	Paulino et al., 1999
	Ascorbic Acid	299-36-5	$C_6H_7O_6$	175.116	Xu et al., 2007
	Arbutin	497-76-7	C12H16O7	272.251	Xu et al., 2007
	Cucurbic acid	131488-83-0	$C_{12}H_{20}O_3$	212.285	Hu et al., 2014
	α -Cucurbic acid methyl ester	62653-84-3	C13H22O3	226.312	Hu et al., 2014
Terpenoids					
	Lupeol acetate	1617-68-1	$C_{32}H_{52}O_2$	468.7541	Qi et al., 2014
	Lupeol	545-47-1	C30H50O	426.717	Mao et al., 2016
	β-Amyrin	559-70-6	C30H50O	426.72	Mao et al., 2016
	Glochidiol	6610-56-6	$C_{30}H_{50}O_2$	442.72	Mao et al., 2016, Hu et al., 2014
	Lup-20(29)-en-3β-ol	33869-84-0	C30H50O	426.717	Mao et al., 2016
	Cloven-2β,9α-dio	2649-64-1	$C_{15}H_{26}O_2$	238.36574	Mao et al., 2016, Hu et al., 2014
	Cleistanthol	24465-21-2	C20H28O3	316.43	Mao et al., 2016, Hu et al., 2014
	Spruceanol	72963-56-5	C20H28O2	300.435	Mao et al., 2016, Hu et al., 2014
	Syringaresinol	6216-81-5	$C_{22}H_{26}O_8$	418.437	Mao et al., 2016
	Dendranthemoside B	/	$C_{19}H_{32}O_8$	388.1784	Mao et al., 2016
	Betulin	473-98-3	C30H50O2	442.717	Ueda et al., 1998
	β-betulinic acid	472-15-1	$C_{30}H_{48}O_3$	456.7	Ueda et al., 1998
	Oleanolic acid	508-02-1	C30H48O3	456.7	Ueda et al., 1998
	28-norlup-20(29)-ene-3β,17β-diol	52591-08-9	$C_{30}H_{50}O_2$	442.717	Ueda et al., 1998
m					
	Montanoic acid ethyl ester	55682-92-3	C29H58O2	438.77	Calixto et al., 1998
	Methyl brevifolin carboxylate	154702-76-8	$C_{14}H_{10}O_{8} \\$	306.224	Calixto et al., 1998, Fang et al., 2008
Sterols					
	(3β,22E)-Stigmasta-5,22-diene-3,25-	64998-19-2	CaeHaeOa	428 69	Mao et al. 2016
	diol	01000 10 2	029114802	120109	11100 et al., 2010
	Daucosterol	474-58-8	C35H60O6	576.847	Mao et al., 2016
	Stigmasterol	83-48-7	C29H48O	412.691	Mao et al., 2016
	Stigmasterol 3-O-β-D-glucoside	5041-82-7	C22H22O12	478.403	Mao et al., 2016
	β-Sitosterol	83-46-5	C29H50O	414.707	Mao et al., 2016, Hu et al., 2014
	β -Sitosterol-3-O- β -D-glucopyranosi	1131372-16-1	C25H60O6	576 847	Magetal 2016 Huetal 2014
	de	1151572 10 1	033110000	570.047	Mao et al., 2010, 114 et al., 2014
Alkaloids					
	Phyllurine	/	/	/	Ueda et al., 1998
	Triacontanol	28351-05-5	C30H620	438.813	Calixto et al., 1998
Others					
	Menisdaurin	67765-58-6	$C_{14}H_{19}NO_7$	313.303	Qi et al., 2014
	5-hydroxymethyl-2-furaldehyde	67-47-0	$C_6H_6O_3$	126.11	Hu et al., 2014
	Epigallocatechin-(4β->8)-catechin	77983-30-3	$C_{30}H_{26}O_{13}$	594.52	Han et al., 2023a
	Phthalic acid bis-ester	117-83-9	C20H30O6	366.45	Satyan et al., 1995

Extract used	Metabol ites	Dosage	IC ₅₀	Methods	Applied	Mechanism	Effects	References
Ethanol	Corilagin		2.28 µM	Molecular docking	Corilagin bindng site of HCV	Interfere of HCV NS3 serine protease	Anti-HCV	Yue et al., 2005
Acetone	Loliolide		1.5±0.2 μg/mL	In vitro	Huh 7.5 cells were infected with HCVcc	Inactivating virus particles	Anti-HCV	Chung et al., 2016a
Acetone	(4R,6S)-2 -Dihydro menisdau rilide		14.25±2.6 μM	In vitro	Huh 7.5 cells were infected with HCVcc	Preventing HCV entry into cells during the initial infection stage	Anti-HCV	Chung et al., 2016b
Aqueou s	The whole plant	5 mg/kg/day, duration 30 days		In vivo	DHBV-infected ducks	Interfere in plasma HBV DNA level	Anti-HBV	Chen and Zhu, 2013
Aqueou s	Ellagic acid		0.07 μg/mL	In vitro	HepG2 2.2.15 cell	Reduced HBeAg secretion Boost immune	Anti-HBV	Shin et al., 2005
Aqueou s	Ellagic acid	5 mg/kg/day, duration 2 weeks		In vivo	HBeAg producing transgenic mice	responses, decrease HBeAg levels, and enhance cytokine release	Anti-HBV	Kang et al., 2006
Aqueou s	Ellagic acid		0.8 and 0.2 g/L	In vitro	Plasmid pHBV1.1 into HepG2 cells	Reduced HBsAg	Anti-HBV	Wu et al., 2015
Ethanol	Emodin- 8-O-β-D- glucopyr anoside, catechin, 3-O-meth ylgallic acid, ethyl gallate, and protocate chuic		5.12 and 8.13 μM	In vitro	HepG2.2.15 cells	Decrease in HBsAg and HBcAg levels, decreased IL-6 mRNA expression, alter the ERK1/2 and JNK signaling pathways	Anti-HBV	Liang et al., 2019
Aqueou s	acid Gallic acid, kaempfer ol,		250 µg/mL	In vitro	HepG2 2.2.15 hepatoblastoma cell	Reduce HBsAg, HBeAg, and HBV DNA secretion, increased the expression of NFE2L2	Anti-HBV	Fu et al., 2023

Table S2 The metabolites from *Phyllanthus urinaria* L. for anti-Viral Hepatitis, and the mechanism

	quercetin,				and HMOX1 proteins			
	corilagin,							
	and rutin							
Aqueou	The whole	30 g, duration	Clinical	HBeAg positive with normal	High rates of HBV	Anti-HBV	Xing et al., 202	
s	plant	96 weeks application		ALT patients	DNA reduction			
	The	1, 2, 3 g,	Clinical	Positive HBeAg	HBV DNA levels			
Ethanol	whole	duration 6	application	and elevated	descend	Anti-HBV	Chan et al., 2003	
	plant	months	11	ALT patients				

Extract used	Metabolit es	Dosage	IC ₅₀	Meth ods	Applied	Mechanism	Effects	References
	Quercetin	5 and 15 mg/kg, duration 8 weeks		In vivo	Induced by CCl4 in SD rats	Reduced levels of serum markers, improved liver appearance, decreased collagen deposition, down-regulation NF-kB/p38, and MAPK/Bax expression, increased Bcl-2 levels	Inhibit HSCs activation	Wang et al., 2017
Methanol	Quercetin	0.5 mg/kg, duration 6 weeks		In vivo	Induced by concanavali n A in mice	Reduced expression of α -SMA, NF- κ B, and TGF- β	Reduced HSCs activation	Wan et al., 2014
	Quercetin	50 mg/kg/d ay, duration 8 weeks	50 µM	In vivo/ In vitro	Mice was injected with CCl4, rat HSCs	Lower portal inflammation and fibrosis scores, decreased serum enzymes ALT, AST, and the expression of TGF-β1, α-SMA, HMGB1, TLR2/TLR4, and NF-κB p65 proteins	Reduced HSCs activation	Li et al., 2016
	Quercetin	50 mg/kg/d ay, duration 4 weeks		In vivo	SD rats injections of TAA	Increase in serum SOD levels and a decrease in the expression of Shh, Ihh, Ptch-1, Smo, Gli3, TNF-α and NF-κB	Reduced HSCs activation	Aslam et al., 2022
	Quercetin	100 mg/kg/d ay, duration 8 weeks		In vivo	CCl4 induced liver fibrosis in rats	Reducing the expression of TNF- α , IL-6, TGF- β 1, COL1 α 1, CTGF, TIMP-1, and α -SMA, increased the expression of TGF- β 1, MMP2, and MMP9	Induced HSCs apoptosis	Hernandez-Ort ega et al., 2012
	Quercetin	50 mg/kg/d ay, duration 8 weeks	50 µM	In vitro/ In vivo	Induced by CCl4 in mice and Raw 264.7 cells	Decreases the expression of α-SMA, the levels of desmin and vimentin, decreases mRNA expression of TNF-α, IL-1β, IL-6, MCP-1, and Notch1	Inhibited the activation of HSCs	Li et al., 2018
	Kaempfero 1	10 uM/L,1 mL/day, duration 4 weeks		In vivo	Induced by CCl4 in mouse	Reduced expression of α-SMA and COLlα1, down-regulation of Notch/Jag1 and up-regulation of miR-26b-5p expression	Decreases the activation of HSCs	Zhou et al., 2022
	Kaempfero l	10 uM/L,1 mL/day,	6.96 µM	In vitro/ In vivo	Induced by CCl4 in female	Reduction in serum levels of HA, LN, AST, ALT, and Smad2/3, down-regulation of the RNA and	Suppress HSCs collagen	Xu et al., 2019

Table S3 The metabolites from *Phyllanthus urinaria* L. for anti-liver fibrosis/cirrhosis, and the mechanism.

		duration			C57BL/6	protein expression of COL1a1,	synthesis	
		4 weeks			mice, HSCs	α-SMA		
					from mouse			
					liver			
			45 1		TAA			
			45 and		induced			
		50	19		hepatotoxici	Decrease α -SMA expression, and	Reduction of	
		mg/kg/d	mg/mL	In	ty in rats,	the levels of PCNA, PDGF-BB,	HSCs	El-Lakkany et
Methanol	Gallic acid	ay,	at 24 and	vitro/	rat hepatic	TIMP-1, HP, and reduce collagen	proliferation/a	al., 2019
		duration	48 h	In vivo	stellate cell	deposition	ctivation	
		8 weeks	respectiv		line			
			ely		(HSC-T6)			
		100			(1100 10)		Attenuation of	
	Filagio	mg/kg/d			TAA	Decreased ALT, AST, ALP levels	liver function	
	agid	nig/kg/u		In vivo	induced	and the expression of MMP2,	tests and	Afifi et al.,
aur	autu,	duration		In vivo	hepatotoxici	MMP9, increased TAC and GPX	fibratia ralata	2018
	quercetin	45 dama			ty in rats	levels	d annea	
		45 days					d genes	
		0.5, 1.0				Decreased levels of GOT and	Protecting	
Methanol	Gallic acid	g/kg,		In vivo	Induced by	GPT, increased levels of SOD,	against	Lee et al.,
		duration			CCl4 in rats	GSH, and GPX	hepatotoxicity	2006
		24 hours						
		1,2,3,4			Induced by		Decrease in	Chirdchupuns
	Phyllanthi	μg/mL,		In vivo	CCl4 in	Reducing the levels of TNF- α ,	ECM	eree and
	n	duration			mice	NF-κB, and TGF-β1	production	Pramyothin,
		24 hours					and deposition	2010
		5				Mitigate the levels of ALT and		
	Phyllanthi	mg/kg/d			Induced by	AST ameliorate the membrane	Reduce	Krithika et al
	n	ay,		In vivo	CCl4 in	damage, resolve the fibrotic-	collagen	2019
		duration			mouse	associated changes	deposition	2017
		30 days				associated changes		
		10					Pamodeling	
	Dhylland	mg/kg/d			Induced by	Reduce the expression of TGF- β 1,	ECM	Vrithilan at
	Phyllanthi	ay,		In vivo	CCl4 in	ALK5, p-Smad2, p-Smad3, ALT,	ECM	Kritnika et al.,
	n	duration			mouse	AST level decreased	synthesis and	2015
		30 days					degradation	
		1.16,						
		2.32,						
		4.64				The levels of AST, ALT, PCI,	Inhibit the	
	The whole	g/kg/day			Induced by	COL IV, LN, HA, and $\alpha\text{-}\text{SMA}$	activation of	Cai et al.,
Aqueous F	plant	,		In vivo	CCl4 in SD	decreased, modulation of the	HSC and	2022
		duration			rats	TNF- α /MAPK and NF- κ B	ECM	
		10				signaling pathways	deposition	
		weeks						
	Corilagin	100		In vivo	Mice	Modulation of the IL-13 signaling	Reduced the	Huang et al
	connagill	100		In VIVO			Acqueeu dit	mung or an,

		mg/kg/d		infected by	pathway and suppression of	synthesis of	2013		
		ay,		schistosoma	GATA3 to regulate the Th1/Th2	collagen			
		duration			balance				
		6							
		weeks							
		1, 5, 10	In vivo	Rat	Reduce AST, ALT and MPO levels, decrease the CINC-1, CINC-3, ICAM-1, IL-6, and TNF-α concentrations				
		mg/kg/d		hemorrhagic		Liver	T in	at	al
	Corilagin	ay,		shock and		protective	2017	ei	aı.,
		duration		resuscitatio		effects	2017		
		24 hours		n model					
		4.5		240 patients		Improved			
		g/kg/day	Clinic	with severe	Increase the reversal rate of liver	liver			
Aquaous	The whole	,	al	liver	fibers and the normalization rate	pathology,	Xing	et	al.,
Aqueous	plant	duration	applic	fibrosis/cirr	of ALT, reduce the inflammation	reduced	2023		
		48	ation	hosis and	of liver tissue	fibrous tissue			
		weeks		CHB		proliferation			

Extract used	Metabol ites	Dosage	IC ₅₀	Methods	Applied	Mechanism	Effects	References
	Querceti n	50 mg/kg/day, duration 28 days	3.213 µМ	In vivo/ In vitro	Huh7 cell line and sorafenib-resistant cell line, cells was injected into BALB/c nude mice	Decreased expression of p-EGFR/EGFR, p-Akt/Akt, p-ERK/ERK, and Bcl-2 proteins, increasing Cleaved PARP1 and Bax expression, reduced tumor weight and volume	Impeded proliferation in cells, reversing acquired resistance to sorafenib	Zhang et al., 2024
	Corilagin	30 mg/kg/day, duration 5 weeks	23.4 µM	In vivo/ In vitro	SMMC7721 and Bel7402 cells, MHCC97-H cell xenografts in Balb/c nude mice	Down-regulates the expression of proteins cyclin B1 and ccdc2, and enhances the inhibition of oncogenes p21, Cip1, and p-p53, reduction in tumor mass and volume	Inhibit the proliferation of HCC cells	Ming et al., 2013
	Corilagin	15 mg/kg/day, duration 7 days		In vivo	Athymic nude mice were injected with Hep3B cells	AST and ALT have remained within normal ranges, suppressing NF-κB pathway	Suppress the growth of liver tumors	Hau et al., 2010
	Querceti n	50 mg/kg/day, duration 21 days;5,10,20	40 µM	In vivo/ In vitro	Huh7 cells and patient tumor xenografted into male NSG mice, Hep3B, Huh7 cell	Tumor sizes were smaller, tumor weight was lighter	Suppresses HCC cell invasion and metastasis	Huang et al., 2024
Aqueous	The whole plants	30 g	0.5 mg/mL	Network pharmacol ogy and <i>in</i> <i>vitro</i>	HepG2 and Hep3B cell	Key target proteins like TP53, Akt1, STAT3, and MAPK, suppress the PI3K/Akt pathway	Inhibit invasion and migration of HCC cells	Wu et al., 2022
Aqueous	The whole plants	30 g	1.5 mg/mL	In vitro	Hep3B and HepG2	Reduced levels of p-PI3K, Akt, and p-Akt proteins in cells	Suppress invasion and metastasis of HCC	Wei et al., 2024
Aqueous	The whole plants	30 g	159 μg/mL	In vivo/ In vitro	Zebra fish lung graft model and HepG2 cell	Attenuated the wound-healing ability of cells and reduced cell migration, inhibiting tumor spread in zebrafish	Inhibiting HCC metastasis	Huang et al., 2021
Aqueous	The whole plants	30 g	148.5 μg/mL	In vitro	HepG2 cell	Affecting the level of exosomal microRNAs, increased levels of proteins beclin-1 and LC3-II, and a decrease in p62 expression	Inhibiting invasion and metastasis in HCC	Liao et al., 2024
Ethyl acetate	7'-hydrox y-3',4,5,9		4.46 μΜ	In vitro	HepG2 cell	Up-regulate c-myc, down-regulate Bcl-2, activate caspase and inhibit	Inducing HepG2 cell	Giridharan et al., 2002

Table S4 The metabolites from *Phyllanthus urinaria* L. for anti-HCC, and the mechanism.

	,9'-penta methoxy- 3,4-meth ylene					telomerase activity	apoptosis	
Hydrome	dioxy Gallic acid		445±65 μg/mL	In vitro	HepG2 cell	Suppress mitochondrial oxidative phosphorylation, decrease intracellular ATP levels, modulate Ca ²⁺ levels, trigger mitochondrial dysfunction Decrease in the mitochondrial	Induce apoptosis in HCC cells	Chudapongse et al., 2010
	Corilagin		37.5 µМ	In vitro	MHCC97-H, Bel-7402, SMMC-7721	membrane potential ratio, elevation proteins Cyto c, caspase 8, and P53, reduction in p-Akt and Bcl-2 protein expression, and cleavage of caspase 3, caspase 9, and PDAP	Induce apoptosis in HCC cells	Deng et al., 2018
	Kaempfe rol		100 μΜ	In vitro	HepG2 cell	Increased LDH activity, up-regulation of GRP94 and GRP78 levels, and induction of CHOP and caspase 3	Triggers HepG2 cell apoptosis	Guo et al., 2016
Aqueous	The whole plants		1.42 mg/mL	In vitro	HepG2 cell	Inhibited the viability of various cancer cells, increased DNA fragmentation	Induces apoptosis in HepG2 cells	Huang et al., 2004b
	Phyllanth in	30 mg/kg/day, duration 14 weeks	25 μΜ	In vivo/ In vitro	Wistar albino rats were induced by DEN; HepG2 cell	CEA, AFP, 8-OHdG, LDH, GGT, ALT, AST, and ALP showed elevated levels, the mRNA expression of TP53, caspase 3, caspase 9, and Bax increased	Induces apoptosis through the PI3K/Akt/mT OR signaling pathway	You et al., 2021
	Luteolin, Kaempfe rol		12μM/ 30 μM	In vivo/ In vitro	SD rats induced by DEN and 2-AAF; rat Hepatocytes	Increased apoptotic cell proportion, caspase 3 enzyme activity, ROS production, and cytochrome C release into the cytoplasm	Modulate ROS signaling pathways	Seydi et al., 2018
	Ellagic acid		5 μΜ	In vivo/ In vitro	Huh7 cells were implanted into BABL/c nude mice; Huh7, Hep3B cell	Decreased cell viability in cells, increased apoptosis ratio, smaller tumor volumes and weights, increase in proteins c-PARP, c-caspase 3, and Bax	Overcome sorafenib resistance in HCC by targeting the MAPK and Akt/mTOR signaling	Tan et al., 2024

pathways

							Delays the	
					HanC2 HBy calls	Inhibit the proliferation, migration,	progression of	
	The		144.2	In wino / In	implanted into	and colony formation of HepG2	HBV-related	
	whole	30 g	144.2	In vivo/ In		cells, reduction in mRNA and	HCC by	Li et al., 2019
	plants		µg/mL	vuro	BABL/c nude mice;	protein expression of HBx,	inhibiting the	
					hep02 cell	PTCH-1, SMO, GLI-1, and GLI-2	HBx-SHH	
							pathway	
						Prevent macrophage M2 type	Through the	
	Corilagin		5 µg/mL	In witho	DAW 264 7 cell	polorization, promote M1 tupe	NF-κB	Zhao et al.,
				In viiro	KAW 204.7 cell	transformation	pathway	2008
							against HCC	
					Mala C57PL /6	Elevated levels of proteins	Anti-HCC by	
Ethanol	The	he 20 hole g/kg,duratio	5 μg/mL	In vivo/ In vitro	Male C57BL/6 mice induced by	E-cadherin and caspase 3,	modulating	
	whole					N-cadherin and Bcl-2 expression	the NF- κB	Wan et al., 2019
	plants n 28 weeks;		VIII O	DEN, HepG2 and	decreased, p-p65, TNF- α , IL-1 β ,	signaling		
					FLC/FKF/3 cells	and COX-2 were down-regulated	pathway	
					MHCC07 L colle	Reduce levels of PCNA, Bcl-2,	Targeting the	
	The				MHCC97-L cells	and CD31 proteins, enhance	c-Jun	
Aguagus	whole	20 a	400	In vivo/ In	BAL B/a mala nuda	expression of proteins of caspase	N-terminal	Han et al.,
Aqueous	whole	50 g	µg/mL	vitro	miner MUCC07 I	3, caspase 8, caspase 9, and	kinase	2023b
	piants				SK Hap 1 coll	DFF40, and decrease HUVEC cell	signaling	
					SK-nep-1 cen	angiogenesis	pathway	
	The		100	In vivo/In	BALB/c nude mice;	Inhibit cell proliferation, slow	Through the	
Aqueous	whole		100 ug/mI	n vivo/ m	Huh-7 and	tumor growth, and arrest the cell	ERK and Akt	Lu et al., 2013
	plants		µg/IIIL	vuro	MHCC-97H cell	cycle at the G0/G1 phase	pathways	
		30 g, 20					Delayed the	
	The	days per		Clinical		UDV DNA lavala dealined	development	
Aguagus	whole	month, a		Clinical applicatio n	HBV-associated	LIBC11 LIBC10 degraged and	of	Tong et al.,
Aqueous	plants	follow-up			U cirrhosis patients E	DPG2 increased	HBV-related	2014
	plants P	period of 2				DRO2 increased	cirrhosis to	
		years					HCC	

Supplementary Figures

Figure S1 Chemical structure of flavonoids extracted from Phyllanthus urinaria L.

Figure S2 Chemical structure of lignans extracted from Phyllanthus urinaria L.

Figure S3 Chemical structure of tannins extracted from Phyllanthus urinaria L.

OH HO

Furosin

Repandinin B

HO

но⊥

Repandusinic acid A

HO

Ferulic acid

0

Mallotinin

ЪН

ОH όн

Ъ

Dehydrochebulic acid trimethyl ester

3,5-Dihydroxy-4-methoxybenzoic acid

ОН

HC

Brevifolin carboxylic acid 3,3',4'-Tri-O-methylellagic acid

2,3,4,5,6-Pentahydroxybenzoic acid Syringin

HO

OH ΗΟ OH ΗÓ 0

HO

√́́́ОН HO

но ő

OH OH HO -OH HO ЮH

Ellagic acid

Phyllanthurinolactone ОН ОН ОН

Brevifolin

Gentisic acid 4-O-b-d-glucopyranoside

Gallic acid

p-Hydroxybenzaldehyde

HO、 HO[^]

Pyrogallol

Cucurbic acid

α-methyl cucurbate

Hexacosanoic acid

О ∕ОН

Ascorbic Acid

Protocatechuic acid

HO, OH HO, OH

Figure S4 Chemical structure of phenolic acids extracted from Phyllanthus urinaria L.

Figure S5 Chemical structure of terpenoids extracted from *Phyllanthus urinaria* L.

Phthalic acid bis-ester

Figure S6 Chemical structure of others metabolites extracted from *Phyllanthus urinaria* L.