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1 THE RHOMBUS CONVERGENCE

In section 4.2 of the manuscript, we define the rhombus convergence property, Here, we provide the precise
statement: Given a rhombus geometry defined by a non-singular matrix A and a vector b, for a given
rhombus with center x0 and 2N lattice vectors yk (see Figure S1), if the x∗ point with f(x∗) = 0 is inside
of the rhombus and between the points yk, the point y1 satisfy f(y1) < f(yk) for all k 6= 1, then the point
x∗ is inside of the sub-rhombus associated to y1. Where, f(x) = ‖A · x− b‖ and A · x∗ = b.

Figure S1. The figure shows the rhombus defined by the geometry of the problem; the cyan and blue
points are the QUBO configurations yk around the big blue point x0 in the center of the rhombus. There
are 2N points (in the figure, N = 2), and with each point, an associated sub-rhombus. The big red square
x∗ satisfy f(x∗) = 0 and x∗ = x0 + t, with t the difference vector. In the figure, the red tiny squares
satisfy xk = yk + t and f(xk) = C for all k. The cyan and blue ellipses express the different values of
f(yk). The big red square x∗ is contained in the left-inferior sub-rhombus, and the associated cyan point
yl in their center satisfy f(yl) < f(yk) for all k 6= l.

In order to understand this, we examine Figure S1. Consider the optimal configuration x∗ (big red square
in the figure), an arbitrary ellipsoid of Figure 2a centered in x∗ and 2N points xk’s defining the rhombus
geometry (red ellipse and the four red squares in the figure). Consider another arbitrary point x0 (big
blue point in the figure), which defines a new set of similar rhombus vectors yk’s (four cyan and blue
points in the figure); for N = 2, these rhombus vectors define the dashed rhombus, which is divided in 4
sub-rhombus (2N in the arbitrary case). Suppose that x∗ is inside of this rhombus and, therefore, also is
inside of a particular sub-rhombus associated with the point yl (cyan point in the left inferior corner of the
figure), then, between the four yk’s the evaluated function f(yl) reach the minimal value (in the figure,
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the cyan point in the left inferior corner is contained in the smaller cyan ellipse). We call this property
the rhombus convergence, which is proved below. The property improves the convergence since the point
associated with the QUBO solution x∗ in each iteration is also contained in the next constructed rhombus.

Consider that the point x∗ belongs to the sub-rhombus defined by y1. We prove that the point ym that
minimize the function f(yk) restricted to the QUBO vectors yk‘s satisfy yk = y1. As x∗ belongs to the
sub-rhombus defined by y1 we can write

x∗ = y1 +
N∑
j=1

Cjvj , with |Cj | ≤
L

4
∀ j, (S1)

where L is the side length of the principal rhombus shown in Figure S1 and vj is the vector that defines
the rhombus geometry. All points inside of the sub-rhombus associated with y1 satisfied |Cj | ≤ L

4 ∀ j,
and any point outside of this sub-rhombus breaks the inequality. The point x∗ also belongs to the principal
rhombus, therefore

x∗ = x0 +
N∑
j=1

Djvj , with |Dj | ≤
L

2
∀ j. (S2)

It is clear that x∗ − x0 = xk − yk, or

yk = xk −
N∑
j=1

Djvj . (S3)

The function f(yk) restricted to the points yk’s can be written as

f(yk) = ‖A · (x∗ − yk) ‖2,

using eq.(S2) and (S3), we obtain

f(yk) =‖A · (
N∑
j=1

Djvj)‖2 + ‖A · (xk − x∗)‖2

− 2[A · (
N∑
j=1

Djvj)] · [A · (xk − x∗)]. (S4)

The two first terms of (S4) are identical for all the possible yk choices. Therefore, the minimal value of
f(ym) is reached by the xm that maximize

[A · (
N∑
j=1

Djvj)] · [A · (xm − x∗)].

Consider a similar rhombus centered at x∗ with associated rhombus points xk (represented by red tiny
squares in Figure S1). The similar rhombus is not shown in the figure, but imagine it centered at x∗. xk
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belongs to this similar rhombus centered in x∗ and is written as

xk = x∗ +
N∑
j=1

s
(k)
j

L

4
vj ,

with s(k)j ∈ {−1, 1} for all j. Using the property

(A · vi) · (A · vj) = vi ·
(
ATA

)
· vj = hiδij ,

we have

[A · (
N∑
j=1

Djvj)] · [A · (xk − x∗)] =
N∑
j=1

s
(k)
j

L

4
hjDj . (S5)

To obtain the configuration that maximize (S5) choose s(m)
j = Sign(Dj) (the hi numbers are always

positive). Using

‖A · (
N∑
j=1

Djvj)‖2 =
N∑
j=1

hjD
2
j

and

‖A · (xm − x∗)‖2 =
N∑
j=1

hj
L2

16

we obtain

f(ym) =
N∑
j=1

hj

(
|Dj | −

L

4

)2

=
N∑
j=1

hjE
2
j , (S6)

or

‖A · (x∗ − ym) ‖2 = ‖A · (
N∑
j=1

Ejvj)‖2

implying in

x∗ = ym +
N∑
j=1

Ejvj (S7)

If we prove that |Ej | ≤ L
4 ∀ j, then Ej = Cj and ym = y1. From (S6), we have

E2
j =

(
|Dj | −

L

4

)2

or

E2
j −

L2

16
= |Dj |2 −

L

2
|Dj |,

but
|Dj | ≤

L

2
⇒ |Dj |2 − |Dj |

L

2
≤ 0
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therefore

E2
j −

L2

16
≤ 0

that is equivalent to |Ej | ≤ L/4, hence ym = y1.

2 ENHACEMENT OF ALGORITHM 2 TO CONSTRUCT THE VECTORS VK

There is a result that improves the Algorithm 2 for calculating the vectors vk, with k ∈ 1, · · · , N . Suppose
that we use the generalized Gram-Schmidt procedure uk → vk, from k = 1 until k = m ≤ N . Therefore,
the operator (in bra-ket notation):

Gm ·H =
m∑
i=1

(
1

〈vi|H|vi〉
|vi〉〈vi|

)
·H,

acts as the identity in the subspace generated by {u1, · · · ,um}. In particular, when m = N , the operator
GN =

∑N
i=1

(
1

〈vi|H|vi〉 |vi〉〈vi|
)

corresponds to the inverse of H.

To prove the last assertion, let the operator

Cm = Gm ·H

be applied to all the vectors {u1, · · · ,um}. Firstly

Cm|u1〉 =
m∑
i=1

1

〈vi|H|vi〉
|vi〉〈vi|H|u1〉

but |u1〉 = |v1〉, and 〈vi|H|u1〉 = 0, if i > 1. Therefore

Cm|u1〉 =
1

〈v1|H|v1〉
|v1〉〈v1|H|u1〉 = |u1〉.

The vectors |vi〉 are normalized in the algorithm, but it is clear that Gm does not depend on a particular
normalization of |vi〉. Consider the unnormalized version of Eq. 8 in the principal manuscript, in bra-ket
notation:

|ṽi〉 = |ui〉+
i−1∑
k=1

βik|ṽk〉 (S0)

with βik = −〈ṽk|H|ui〉/〈ṽk|H|ṽk〉. Suppose that j ≤ m, we have
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Cm|uj〉 =
m∑
i=1

1

〈ṽi|H|ṽi〉
|ṽi〉〈ṽi|H|uj〉

=

j−1∑
i=1

〈ṽi|H|uj〉
〈ṽi|H|ṽi〉

|ṽi〉

+
〈ṽj |H|uj〉
〈ṽj |H|ṽj〉

|ṽj〉

+
m∑

i=j+1

〈ṽi|H|uj〉
〈ṽi|H|ṽi〉

|ṽi〉.

From |ṽj〉 = |uj〉+
∑j−1

k=1 βjk|ṽk〉, we have

〈ṽi|H|ṽj〉 = 〈ṽi|H|uj〉+
j−1∑
k=1

βjk〈ṽi|H|ṽk〉

if i > j, the previous equation imply in 〈ṽi|H|uj〉 = 0. However, if i = j we have 〈ṽj |H|uj〉 = 〈ṽj |H|ṽj〉.
Substituting in eq. (2):

Cm|uj〉 =
j−1∑
i=1

〈ṽi|H|uj〉
〈ṽi|H|ṽi〉

|ṽi〉

+
〈ṽj |H|ṽj〉
〈ṽj |H|ṽj〉

|ṽj〉,

but 〈ṽi|H|uj〉/〈ṽi|H|ṽi〉 = −βji when i < j. Therefore

Cm|uj〉 = −
j−1∑
i=1

βji|ṽi〉+ |ṽj〉 = |uj〉

so, Cm|uj〉 = |uj〉 for all j ≤ m, but {u1, · · · ,um} form a basis, therefore Cm acts as the identity in the
subspace generated by the vectors {u1, · · · ,um}, with m ≤ N .

Equation (2) can be rewritten as:

|ṽm〉 = |um〉 −
m−1∑
i=1

(
1

〈vi|H|vi〉
|vi〉〈vi|

)
·H|um〉

or

|ṽm〉 =

(
I−

m−1∑
i=1

1

〈vi|H|vi〉
|vi〉〈vi| ·H

)
|um〉,
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Figure S2. Gram-Schmidt procedure for the calculus of the N ’s H-orthogonal vectors (v1, · · · ,vN ). wk
corresponds to the k-th vector component of w and hk = H · uk.

Due to our previous result, the action of the operation within the parentheses is straightforward. We define
hm = H · |um〉, which correspond to the m-th row of H. In vector notation, the vector ṽm is

ṽm = um −Gm−1 · hm

with Gm−1 · hm a vector with dimension equal to m− 1.

The modification of algorithm 2 is shown in Figure S2

To conclude, it is interesting to verify that for m < N , the operators

Em =
m∑
i=1

1

〈vi|H|vi〉
|vi〉〈vi| ·H

and
Ec
m = I− Em

are oblique non-Hermitian projectors.

This is
Em · Em = Em,

Ec
m · Ec

m = Ec
m,

I = Em + Ec
m,
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and
Em · Ec

m = Ec
m · Em = 0.

with 0 the zero matrix.

3 APPLICATION OF SIMPLE EXAMPLES FOR ALGORITHMS 3 AND 5

In Section 2 of the manuscript, we explicitly calculate the first iteration of Algorithm 1 shown in Fig. 2
for a simple linear equation system with N = 2. Here, we provide examples for two 4× 4 ill-conditioned
matrices applied to Algorithms 3 and 5 (see Fig. 5 and Fig. 8 of the manuscript), respectively. We use exact
rational numerical expressions to demonstrate that the method works for arbitrary ill-conditioned matrices
when the numerical error is controlled.

3.1 Example for algorithm 3

Consider the following ill-conditioned 4× 4 matrix studied in Ref. ?.

A =


−5046135670319638 −3871391041510136 −5206336348183639 −6745986988231149
−640032173419322 8694411469684959 −564323984386760 −2807912511823001
−16935782447203334 −18752427538303772 −8188807358110413 −14820968618548534
−1069537498856711 −14079150289610606 7074216604373039 7257960283978710

 (S-12)

Next, we work with the exact rational expressions, but for simplicity and convenience, we express them
in raw scientific notation between square brackets. This notation implies that we are working with involved
exact rational expressions. For example, in this notation A is

−[5]× 1015 −[4]× 1015 −[5]× 1015 −[7]× 1015

−[6]× 1014 [9]× 1015 −[6]× 1014 −[3]× 1015

−[2]× 1016 −[2]× 1016 −[8]× 1015 −[1]× 1016

−[1]× 1015 −[1]× 1016 [7]× 1015 [7]× 1015


means that we know the exact expression of A, but we do not show it explicitly. Define H = AT ·A,
and apply Algorithm 2 or 6 to calculate the geometry vectors. It is convenient to exclude the step
vk/(vk · vk)

1/2 → vk to simplify the calculations. The geometry vectors are now not normalized, but the
method still works. Defining V = (v1,v2,v3,v4)

T and C = (C1, C2, C3, C4) with Ck = vk · (H · vk),
we obtain

V =


1 0 0 0
−[1] 1 0 0
−[1] [4]× 10−1 1 0

−[8]× 10−1 [2]× 10−1 −[7]× 10−1 1

 ,

and C =
(
[3]× 1032, [3]× 1032, [2]× 1031, [6]× 10−97

)
.

Next, we define b to apply Algorithm 3, choosing

b = A · (1, 20, 300, 4000)T .
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Therefore, at the final step of Algorithm 3, we must have x0 → (1, 20, 300, 4000). We explicitly show
the results of the first iteration of the algorithm. Defining I = (1, 1, 1, 1) and Aq = A ·VT equal to


−[5]× 1015 [2]× 1015 −[2]× 1015 −[6]× 10−49

−[6]× 1014 [9]× 1015 [4]× 1015 −[2]× 10−49

−[2]× 1016 −[5]× 1013 [3]× 1014 [2]× 10−49

−[1]× 1015 −[1]× 1016 [2]× 1015 −[2]× 10−49


Using the initial guess x0 = (0, 0, 0, 0) and choosing L = 105, we calculate

bq =
1

L

(
b+

L

2
Aq · I−A · x0

)
,

or bq =
(
−[3]× 1015, [6]× 1015,−[9]× 1015,−[5]× 1015

)
.

As we calculate the exact vector geometry of the problem, the QUBO matrix Q is diagonal. The diagonal
is given by

Q = C− 2Aq
T · bq

or, Q =
(
−[2]× 1031, [1]× 1031,−[1]× 1030,−[4]× 10−98

)
. The configuration that minimizes the

previous diagonal QUBO problem is q = (1, 0, 1, 1). Inserting this into

x0 + LVT ·
(
q− I

2

)
we obtain the new

x0 ≈ (18712.5,−18623.5, 14709.2, 50000),

we redefine L/2→ L, and repeat the procedure as many times as necessary calculating news bq and Q.
After 50 iterations, the error difference is |x∗ − x0| = 6.9× 10−11, with x∗ = (1, 20, 300, 4000).

3.2 Example for algorithm 5

Now, consider the matrix A

A =


−15000000000001 35000000000011 −14999999999999 34999999999989
35000000000011 −15000000000001 34999999999989 −14999999999999
−14999999999999 34999999999989 −15000000000001 35000000000011
34999999999989 −14999999999999 35000000000011 −15000000000001

 (S-15)

Calculating H = AT ·A, call the first 2× 2 block diagonal block of H as H1.

H1 =

(
[3]× 1027 −[2]× 1027

−[2]× 1027 [3]× 1027

)
We can verify that the eigenvalues of H1 are

EH1 = ([5]× 1027, [8]× 1026).
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The square root of the quotient of these eigenvalues is 2.5, which is an excellent low condition number for
a subproblem. Choose (a1, a2) = (2, 2) and use Algorithm 4 to determine the vectors that decompose the
original 4× 4 problem into two 2× 2 subproblems, in the notation of algorithm 4, HI = H−11 . Also here,
it is convenient to exclude the step vk/(vk · vk)

1/2 → vk to simplify the calculations. In the end we obtain

V =


1 0 0 0
0 1 0 0
−[1] [2]× 10−25 1 0

[2]× 10−25 −[1] 0 1

 ,

and

HV = V ·
(
H ·VT

)
=

(
H1 02×2
02×2 H2

)
with

H2 =

(
[1]× 103 −[2]× 102

−[2]× 102 [1]× 103

)
.

As in the previous problem, define

b = A · (1, 20, 300, 4000)T ,

L = 105, and x0 = (0, 0, 0, 0). Put R = 3 and calculate AV = A ·VT , Aq = AV ⊗
(
20, 2−1, 2−2

)
and

Iq
(1) = Iq

(2) =

(
1 0
0 1

)
⊗
(
20, 2−1, 2−2

)
,

Hq
(j) = Hj ⊗

(
20, 2−1, 2−2

)
,

Q
(j)
0 =

(
Iq

(j)
)T
·Hq

(j),

with j ∈ {1, 2}.

With all these quantities, we can explicitly show the first iteration of Algorithm 5. First, we calculate

bq =
1

L

(
b+ L

23 − 1

23
AV · I−A · x0

)
,

or bq = ([2] × 1013, [2] × 1013, [2] × 1013, [2] × 1013). The dimension of Aq is 4 × 12, therefore
B = Aq

T · bq has dimension 12. The first R ∗ a1 = 6 components of B are associated with subproblem 1,
and the remaining 6 = R ∗ a2 components of B are associated with subproblem 2. Call such subvectors B1

and B2. The two QUBO subproblems to solve in the first iteration are

Qj = Q
(j)
0 − 2 ∗Diag(aj) (Bj) ,

where Diag(aj) (Bj) is a 6× 6 = Raj ×Raj diagonal matrix constructed with the vector Bj for j ∈ 1, 2.
Explicitly
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Q1 = 1026



[17] [15] [7.3] −[21] −[11] −[5.3]
[15] [1] [3.6] −[11] −[5.3] −[2.6]
[7.3] [3.6] −[1.3] −[5.3] −[2.6] −[1.3]
−[21] −[11] −[5.3] [13] [15] [7.3]
−[11] −[5.3] −[2.6] [15] −[0.85] [3.6]
−[5.3] −[2.6] −[1.3] [7.3] [3.6] −[2.2]

 ,

Q2 = 10



−[42] [49] [24] −[18] −[8.8] −[4.4]
[49] −[45] [12] −[8.8] −[4.4] −[2.2]
[24] [12] −[29] −[4.4] −[2.2] −[1.1]
−[18] −[8.8] −[4.4] −[50] [49] [24]
−[8.8] −[4.4] −[2.2] [49] −[49] [12]
−[4.4] −[2.2] −[1.1] [24] [12] −[31]

 ,

the best QUBO solutions are respectively q1 = q2 = (1, 0, 0, 1, 0, 0). We multiply each solution by the
adequate factor as expressed in eq. 2 and concatenate the two solutions in one. Explicitly

q1 →(1× 20, 0× 2−1, 0× 2−2, 1× 20, 0× 2−1, 0× 2−2)

q∗1 =(1, 0, 0, 1, 0, 0)

q2 →(1× 20, 0× 2−1, 0× 2−2, 1× 20, 0× 2−1, 0× 2−2)

q∗2 =(1, 0, 0, 1, 0, 0)

q =(q∗1,q
∗
2) = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)

to obtain x̂, we add the four adjacent triplets (R = 3 and N = 4) of q, explicitly

x̂ = (1, 0, 0︸ ︷︷ ︸
add

, 1, 0, 0︸ ︷︷ ︸
add

, 1, 0, 0︸ ︷︷ ︸
add

, 1, 0, 0︸ ︷︷ ︸
add

) = (1, 1, 1, 1).

Inserting this into

x0 + LVT ·
(
x̂− 23 − 1

23
I

)
we obtain the new

x0 ≈ (6.25× 10−21, 6.25× 10−21, 1250, 12500),

we redefine L/2→ L, and repeat the procedure as many times as necessary calculating news bq, Q1 and
Q2. After 120 iterations, the error difference is |x∗ − x0| = 2.0× 10−32, with x∗ = (1, 20, 300, 4000).
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