Generation of lysolipin derivatives by genetic engineering

Helene Robertsen^{1,2}, Sabrina Rohrer¹, Andreas Kulik¹, Wolfgang Wohlleben^{1,2,3*}, Yvonne Mast^{1,2,4,5,6*}

¹Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany

²German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany

³Cluster of Excellence 'Controlling Microbes to Fight Infections' (CMFI), University of Tübingen, Tübingen, Germany

⁴Department Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ -German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany

⁵Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany

⁶Technische Universität Braunschweig, Institut für Mikrobiologie, Rebenring 56, 38106 Braunschweig, Germany

*Correspondence: Prof. Dr. Yvonne Mast yvonne.mast@dsmz.de

Prof. Dr. Wolfgang Wohlleben Wolfgang.wohlleben@biotech.uni-tuebingen.de

Running title: Novel lysolipin derivatives

Key words: actinomycetes, *Streptomyces*, antibiotic, polyketides, lysolipin, genetic engineering

Table S1: Media receipt for lysolipin production media NL800 and E1. All data refer to 1 L H_2O_{deion} .

Medium	Ingredients	рН
NL800	5 g glucose 10 g glycerin 10 g soluble starch 5 g soy flour full fat 2 g yeast extract 1 g NaCl 1 g CaCO ₃	7.2
E1	20 g glucose 20 g soluble starch 5 g yeast extract 2.5 g pharmamedia 1 g MgSO ₄ x 7H ₂ O 1.3 g KH ₂ PO ₄ x 3H ₂ O 5 g NaCl 5 g CaCO ₃	7.5

Table S2: Oligonucleotides used in this study. MunI restriction site is highlighted by bold letters.

Primer designation	Primer sequence (5'-3')
IlpRI- CmR.MunI-F	TTGATTAGTCACGCCGCACCTAGTAGCCTGGCAACTATGCAATTGGACGTCTA AGAAACCATTAT
IlpRI- CmR.Munl-R	GCCGGTTCCATCCCCGTCGGCTGGCCGGCGCGGGTCTCACAATTGTTACGCC CCGCCCTGCCAC

Table S3: Bioactivity profile of lysolipin I and its derivatives as reported in patent WO/2007/079715. Improved bioactivities are highlighted in bold.

Lysolipin (derivative)	MIC (μg/mL)	Cytotoxicity (IC50, [M])
	(E. coli ATCC10536)	(THP-1 (human
		lymphoblast))
Lysolipin I (CBS42)	128	9.39E-09
CBS40	3	2.16E-08
CBS44	128	1.16E-07
CBS48	128	2.08E-07
CBS49	30	3.44E-07
CBS68	128	1.58E-07
CBS70	128	2.99E-07
CBS72	128	4.27E-08

Figure S1: Lysolipin I production of *Streptomyces tendae* TÜ4042 and transcriptional regulatory mutants *S. tendae* $\Delta IIpRII$, $\Delta IIpRIII$, $\Delta IIpRIII$, $\Delta IIpRIV$, and $\Delta IIpRV$, respectively, according to Rohrer, 2017. Cell cultures were harvested after 1, 2 and 6 days of cultivation in E1 medium. Lysolipin production was analysed by HPLC-MS by using a

lysolipin calibration curve. Results are shown from three independent biological replicates.

Figure S2: Schematic presentation of the cloning procedure to generate construct $4H04\Delta IlpRI$ in E. coli. Up- and downstream homologous regions of IlpRI are indicated in blue and yellow, respectively. MunI restriction sites are shown in orange. Homologous recombination events are highlighted as red dashed crosses 1: λ -RED-driven recombination of homologous gene regions by a double crossover event to integrate the PCR-amplified IlpRI disruption cassette into 4H04; 2: $4H04\Delta IlpRI$ with chloramphenicol resistance marker (CAM) and deleted IlpRI gene; 3: $4H04\Delta IlpRI$ without CAM cassette after restriction with MunI, resulting in IlpRI deletion.

Figure S3: HPLC chromatograms of extract samples from A) *S. albus* 4H04Δ*llpOl* (yellow) and B) *S. albus* 4H04Δ*llpOl*Δ*llpRl* (red). Peak at RT 12.4 correlates to lysolipin derivative (CBS40) production and is highlighted in grey. Samples were obtained from cultures grown for seven days at 28°C.

Figure S4: HPLC chromatograms of extract samples from A) *S. albus* 4H04Δ*llpMVI* (yellow) and B) *S. albus* 4H04Δ*llpMIV*Δ*llpRI* (purple). Peak at RT 10.6 correlates to lysolipin derivatives (CBS 70+72) production and is highlighted in grey. Samples were obtained from cultures grown for seven days at 28°C.

Figure S5: HPLC chromatograms of extract samples from A) *S. albus* 4H04 (green) and B) *S. albus* 4H04 Δ *llpOI* (green). Peaks correlating to lysolipin I and lysolipin derivatives are highlighted by arrows. MS spectra are shown in black. Samples were obtained from cultures grown for seven days at 28°C.