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1 APPENDIX

1.1 Forward-Euler first-order exponential integrator method

Consider the following differential equation,

τ ẏ = −y +N (y) + τ γ s(t) , (S1)

where N (y) is a nonlinear function and s(t) is a spike train defined as

s(t) =
∑
f

δ(t− tf ) . (S2)

Multiplying both sides by 1
τ exp(

t
τ ) and then integrating over [tn, tn+1], where tn = n∆t, yields∫ tn+1
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ẏ exp

t

τ
+ y

1

τ
exp

t

τ

)
dt =

1

τ

∫ tn+1

tn

N (y) exp
t

τ
dt+ γ

∑
f

∫ tn+1

tn

exp
t

τ
δ(t− tf ) . (S3)

The left hand side has an exact solution
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∣∣∣∣tn+1
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. (S4)

For the first term of the right hand side, the nonlinearity N (y) can be approximated as constant over
[tn, tn+1] for sufficiently small ∆t, so that N (y) ≈ N (yn) and we can solve it as
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. (S5)

Finally for the last term, the width ∆t of the interval [tn, tn+1] can be set sufficiently small to include
at most a single spike. The exact firing time tf ∈ [tn, tn+1] can then be discretised as tf = tn so that
sn =

∑
f δ(tn − tf ) and

γ
∑
f

exp
tf

τ

∣∣∣∣
tf∈[tn,tn+1]

= γ exp
tn

τ
sn (S6)

Putting everything together, we get the following update equation for y in discrete time,

yn+1 = exp
−∆t

τ

(
yn + γ sn

)
+
(
1− exp

−∆t

τ

)
N (yn) . (S7)

1.2 Eigenvalues of AdLIF free equations

The free equations of the AdLIF neuron model are obtained by considering Eqs. (3) and (4) in the special
case where there is no input, I(t) = 0, and no emitted spikes, s(t) = 0. They can be rewritten in matrix
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form as,
d

dt

[
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]
=

[
−1/τu −1/τu
a/τw −1/τw

] [
u

w

]
= A

[
u
w

]
. (S8)

The eigenvalues can be found by setting the determinant of A− λI to zero,∣∣∣∣−1/τu − λ −1/τu
a/τw −1/τw − λ

∣∣∣∣ = 0 , (S9)

yielding the characteristic polynomial,

λ2 + λ

(
1

τu
+

1

τw

)
+

1 + a

τuτw
= 0 , (S10)

whose roots correspond to the two eigenvalues of the system,

λ1,2 = −1
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1
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2

√√√√( 1

τu
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)2

− 4(1 + a)

τuτw
. (S11)

In order to prevent the occurrence of exponentially growing solutions and ensure stability, both eigenvalues
need to have a strictly negative real part, which can be realised by imposing a lower bound a > −1 on
the coupling strength. Moreover, allowing eigenvalues to have a nonzero imaginary part introduces the
potential for oscillatory modes that may amplify perturbations. This could cause some challenges in terms
of numerical stability, convergence and interpretability, especially in the context of deep neural networks
trained with gradient descent. We therefore impose an additional upper bound on the values of a leading to
the overall stability condition,

−1 < a ≤
(
τw − τu

)2
4τuτw

. (S12)

1.3 Kernel formulation of a spiking neuron

Using the SRM formulation, the membrane potential u(t) is described as,

u(t) =

∫ ∞

0
κ(s) I(t− s)ds+

∫ ∞

0
η(s)S(t− s)ds , (S13)

where the two kernels κ(s) and η(s) describe the response to an input pulse and the response to an afterspike
reset pulse respectively. It can be shown that the differential equations of a linear AdLIF neuron has an
equivalent kernel formulation with,

κ(s) =
(
β1 e

λ1 s + β2 e
λ2 s
)
Θ(s) (S14a)

η(s) =
(
γ1 e

λ1 s + γ2 e
λ2 s
)
Θ(s) , (S14b)

where λ1, λ2 are the eigenvalues of the system given in Supplementary Eq. (S11) and Θ(s) is the Heaviside
step function. The coefficients β1, β2 of the input kernel are such that the membrane potential increases by
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∆u = 1, without any effect on the recovery current, i.e., ∆w = 0,

β1 =
τuλ2 + 1

τu(λ2 − λ1)
and β2 = 1− β1 . (S15)

The coefficients γ1, γ2 on the afterspike reset kernel are such that the membrane potential decreases by
∆u = ϑ− ur and the recovery current jumps by an amount ∆w = b,

γ1 =
b− (ϑ− ur)(τuλ2 + 1)

τu(λ2 − λ1)
and γ2 = −(ϑ− ur)− γ1 . (S16)

2 SUPPLEMENTARY TABLES

Table S1. Hyperparameter tuning for the simulation time step on the TIMIT dataset. PERs are reported after 50 epochs using 16 CNN channels, 3 layers of 512
neurons each, 50% of AdLIF neurons, 100% feedforward and 50% recurrent connectivity.

Time step [ms] Epoch duration [min] Test PER [%] Validation PER [%]
5 21 20.5 18.2
2 53 20.4 18.7
1 156 20.6 18.2

Table S2. Hyperparameter tuning for the number of CNN channels on the TIMIT dataset. PERs are reported after 50 epochs using a 5 ms time step, 3 layers,
512 neurons per layer, 50% of AdLIF neurons, 100% feedforward and 50% recurrent connectivity. Bold values indicate the lowest achieved PERs.

CNN channels Nerve fibers Parameters in complete encoder Test PER [%] Validation PER [%]
8 592 1.8M 20.9 18.9
16 1,184 2.1M 20.5 18.2
32 2,368 2.7M 20.2 18.4
64 4,736 3.9M 19.8 18.0
128 9,472 6.4M 21.3 18.9

Table S3. Hyperparameter tuning for the feedforward connectivity on the TIMIT dataset. PERs are reported after 50 epochs using a 5 ms time step, 16 CNN
channels, 3 layers of 512 neurons each, 50% of AdLIF neurons and 50% recurrent connectivity. Bold values indicate the lowest achieved PERs.

Feedforward connectivity Number of parameters Test PER [%] Validation PER [%]
0.2 629k / 1.2M 22.0 19.6
0.5 968k / 1.5M 21.6 19.7
0.8 1.3M / 1.8M 20.7 18.8
1.0 1.5M / 2.1M 20.5 18.2
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Table S4. Hyperparameter tuning for trainable delays on the TIMIT dataset. PERs are reported after 50 epochs using a 5 ms time step, 16 CNN channels, 3
layers of 512 neurons. Bold values indicate the lowest achieved PERs.

Model type Conv Groups Number of parameters Test PER [%] Validation PER [%]
No recurrence no SFA 1 2.3M / 2.8M 26.2 24.6
Recurrence only 1 2.7M / 3.2M 21.6 19.5
SFA only 1 2.3M / 2.8M 23.3 20.7
Recurrence and SFA 1 2.7M / 3.2M 20.8 18.6
Recurrence and SFA 4 968k / 1.5M 21.0 18.4

Table S5. Results with moving threshold SFA on the TIMIT dataset. PERs are reported after 50 epochs using a 2 ms time step, 16 CNN channels, 3 layers of
512 neurons.

Model type Number of parameters Test PER [%] Validation PER [%]
SFA only 1.1 / 1.7M 26.3 23.9
Recurrence and SFA 1.5 / 2.1M 22.1 19.2

Table S6. Sensitivity to frequency of auditory nerve fibers. The second column gives the sensitivity ranges measured in Devi et al. (2022) that we compute from
their reported mean Q10 values in the normal hearing group. The third column gives the Mel scale centers using 80 filters that surround the corresponding
sensitivity ranges.

Characteristic
Frequency [Hz]

Sensitivity
range [Hz]

Nearby Mel bin
centers [Hz]

Overlapping Number
of bins

500 416-583 416, 452, 488, 525, 564, 604 5-6
1000 881-1119 872, 921, 973, 1026, 1080, 1136 5-6
2000 1770-2230 1729, 1806, 1886, 1967, 2052, 2139, 2228 6-7
4000 3566-4434 3553, 3688, 3827, 3970, 4117, 4270, 4427 7
6000 5501-6499 5479, 5674, 5875, 6083, 6297, 6519 5-6
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