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APPENDIX A. INVERSE DOWER TRANSFORM

The VCG can be estimated from the Inverse Dower Transform (IDT) (Equation [ST). Essentially, this
method comprises a linear combination that projects the signals recorded by the standard 12-lead ECG
onto the spatial coordinates XYZ:

veg(t) = IDT - ecg(t), (S1)

where veg(t) is a 3-component vector containing the spatial leads XYZ, ecg(t) is an 8-component vector
containing the 8 independent leads of the ECG (notice that from the 6 limb leads only two of them are
independent and the rest of them can be computed from a linear combination, for example I and II) and
IDT is a 3 x 8 matrix Table[ST|representing the Inverse Dower Transform with the weights that each of
the 8 independent ECG leads have on the XYZ components. Since the direct contribution of lead III and
the augmented leads is disregarded in the IDT transformation, the second section of the ECG printout,
containing the augmented leads exclusively, has absolutely no influence on the reconstructed veg(t). Table
displays the coefficients of the IDT matrix, where it is worth mentioning the significant weight of lead
II, particularly in generating the Y-coordinate.

Table S1. Transformation matrix coefficients (IDT) for Inverse Dower Transform.

I II Vi V2 V3 V4 V5 N
X 0.156 -0.010 -0.172 -0.074 0.122 0.231 0.239 0.194
Y -0.227 0.887 0.057 -0.019 -0.106 -0.022 0.041 0.048
Z 0022 0.102 -0.229 -0.310 -0.246 -0.063 0.055 0.108

APPENDIX B. NETWORK ARCHITECTURE

The architecture presented in (Anand et al., 2022), chosen for this study, is depicted in Figure [ST]

APPENDIX C. IMPLEMENTATION DETAILS

The table provided (Table lists the hyperparameters utilized in each model. While the loss function and
optimizer were selected according to findings in (Anand et al., 2022), we conducted a thorough search for
learning rates and lambda parameters tailored to each input, as elaborated below.

C.1 Learning Rate search

For the selection of the learning rate, an empirical search was conducted based on the results of the AUC
on the validation set. To do this, a search range from 5 x 1076 to 5 x 10~! was explored.

C.2 )\ Parameter optimization

The methodology to optimize A entails a systematic exploration of a predefined range of \ values,
typically ranging from O to 2 in increments of 0.25, while evaluating the model’s performance on a
validation dataset at each value. Initially, the exploration commences with a fixed step size, such as 0.25,
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Figure S1. 2D-CNN backbone. /N denotes the number of input channels (i.e. N = 12 in standard ECG or
N = 3in VCG).

spanning the entire range. Should a notable performance enhancement be observed at a specific A value, the
step size is halved. Subsequently, the search extends to neighboring A values on both sides of the improved
point. If performance continues to exhibit improvement, the step size is further halved, and the search
scope is adjusted accordingly. This iterative process persists until there is no substantial enhancement in
both the mean and standard deviation, typically by 0.05.

To determine the optimal A factor for each model and address the imbalance effect, we computed the
mean and standard deviation of the AUC for all models in the validation set. The selected A value is the one
that exhibits the highest mean and lowest standard deviation. This choice indicates that this A parameter
yields the best results for all classes in a relatively balanced manner.
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Table S2. Hyperparameters used for training each model.

Loss Function | Optimizer | Learning rate A
ECG 15 BCE Adam 0.0005 0.3750
ECG 12 BCE Adam 0.0005 0.3750
ECG 8 BCE Adam 0.00045 0.4125
ECG 6 BCE Adam 0.0003 0.4750
ECG 3 BCE Adam 0.0001 0.5000
ECG 1 BCE Adam 0.00005 0.6250
IDT BCE Adam 0.0001 0.5000
PCA 12 BCE Adam 0.0005 0.4000
PCA 8 BCE Adam 0.00045 0.4500
PCA 6 BCE Adam 0.0003 0.4825
PCA 3 BCE Adam 0.0001 0.5625
PCA 1 BCE Adam 0.00005 0.7000

To demonstrate how the A value influences each input, we present various examples in Figure |S2|using
the same type of input, such as ECG, but with different numbers of channels (12 and 3). Additionally, we
compare inputs with the same number of channels, such as 3, but with different input types, including
ECG, PCA, and IDT. For the 12-lead ECG input, the optimal A value is approximately 0.375. However, for
inputs with 3 channels, the A value increases to around 0.5 in all cases.
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Figure S2. AUC performance depending on A value in varying number of channels (12 and 3) and
information representation (ECG, PCA and VCG).
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