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S.I. 1. Synthesis of SnOz:

The SnO: nanoparticles were synthesized using hydrothermal method. 0.11 mmol of
SnCl2*2H>0 was prepared in 40 mL of MeOH. Then about 20 mL of H>O, was added slowly
in the above solution. Then solution was stirred for 30 minutes. Then the solution was and
heated in Teflon-lined stainless-steel autoclave at 150 °C for 15 hours. The synthesised
nanoparticles were centrifuged, washed with excess methanol and dried in oven at 80 °C for 6

hours.

S.I. 2. Synthesis of Ag3;POs4:

The AgzPOsnanoparticles were synthesized using hydrothermal method. 2.94 mmol of AgNO;
were dissolved in 30 mL of distilled water. In another beaker 1 mmol of Na,HPO4 was
dissolved in distilled water. After both the solutions were clear, Na,HPO4 solution was added
slowly in AgNOs3 solution. Formation of yellow coloured precipitate was observed. Then the
solution was put in Teflon-lined stainless-steel autoclave and heated at 150 °C for 15 hours.
The yellow-coloured nanoparticles were centrifuged, washed with distilled water and dried in

oven at 80 °C for 6 hours.

S.I. 3. Characterization details

For SEM images, Gemini SEM 500 scanning electron microscope (SEM) was used. A Jeol
IT200 was used to record the element mapping. Thermo Scientific Nicolet iS50 FTIR tri-
detector was used to observe FTIR. Rigaku MiniFlex instrument was used to generate X-ray
diffraction (XRD) patterns having Cu filament of K, =1.54A and scanning rate of 3 degree per
minute at room temperature. BET adsorption-desorption isotherms were performed using
Microtrac BELSORP Mix II at 77 K. UV-vis spectra were recorded by Michelson
Interferometer FTIR Spectrophotometer. Shimadzu UV-1800 spectrophotometer which utilize
a precision Czerny-Turner optical system was used for taking UV—visible diffuse reflectance
spectrum. X-ray photoelectron spectroscopy (XPS) was performed by a Shimadzu AXIS
Supra” having Al K, X-ray.
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S.I. 4. Equations used for kinetic studies
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Table S1: FTIR bands of Ag3PO4/SnO; nanocomposite
Peak (cm™) About Reference
Antisymmetric streching of
1119 (1
P-O bonds
949 PO4*" stretching (2)
663 P-O-P Streching 3)
627 O-Sn-O Stretching “)
Asymmetric Bending of
544 )
0O=P-O bond
500 Sn-O Streching 4)
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Table S2: A comparison of synthesized nanocomposite with nano-catalysts reported in literature which have been used for photocatalytic [PU

degradation
Catalyst Synthesis Concentration Amount of UV lamp Degradation Time Ref.
method of IPU Catalyst power efficiency
TiO2 functionalized | Electrospinning 0.5-Img/L | - 300 Watt 100% 8 hours (5)
silica nanofibrous | and dip-coating
membranes method
SnS»/RGO Hydrothermal 10mL solution 2mg 65 Watt Rate constant |  ----- (6)
nanocomposite method of concentration 0.0219 min’!
Ippm
GO-Ti0; catalyst Hydrothermal Smg/L 200mg/L 15 Watt About 100% | 300 min (7)
method
PAN/Ag- Coaxial 15mg/L(50mL 0.1g 500 Watt 87.9% 60 min (8)
AgBr@BizTiO3: electrospinning solution)
method
Ti0; Dip coating I0mg/L. | - Two 60 Watt 57.07% 120 min 9)

method

lamps and four

15 watt lamps
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TiO2/HY composite Solid state 1.14 x 10* 50mg intensity 100% 120min (10)
dispersion M(50mL) ~75mWem™?
method
Fe-BTC MOF @ aramid | layer-by-layer S5mg/L(50mL) 3cmx3cm 300 watt 90% 7 hours (11)
fabric  (Fe-BTC@AF) | in situ self-
composite assembly
methods
Yb* doped | Hydrothermal 15mg/L(50mL) 50mg 500 watt 90.2% | @ ---- (12)
microspherical BiOl method
Bismuth modified porous | Impregnating 1.14 x 104 250kW 100% 120 min (13)
silica (B12S105) method mol/L
AgzP04/SnO2 Hydrothermal Ippm 0.1g 125 Watt 97% 120 min | Current
method work
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Figure S2: W-H plot of AgzP0O4/SnO2 nanocomposite.
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Figure S3: Core level XPS spectrum of Phosphorus.
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Figure S4: HRMS of isoproturon (a) 0 min and (b) 120 min of light irradiation.
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