Synergistic Heterojunction Effects in Ag₃PO₄/SnO₂ Nanocomposites: A Photocatalytic Study on Isoproturon Degradation

Rishi Ram¹, Bhawna², Sanjeev Kumar³, Akanksha Gupta⁴, Ravinder Kumar^{5*}, Kashyap Kumar Dubey⁶, Vinod Kumar^{3,7*}

¹School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India; ²Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad 201204, India; ³Department of Chemistry, University of Delhi, Delhi-110007, India; ⁴Department of Science and Technology, Technology Bhavan, New Delhi-110016, India; ⁵Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India; ⁶School of Biotechnology, Jawaharlal Nehru University, Delhi, India; ⁷Sustainable Energy & Environmental Nanotechnology Group, Special Centre for Nano Science, Jawaharlal Nehru University, Delhi-110067, India.

*Corresponding author: <u>vkumar2@chemistry.du.ac.in</u>; <u>vinod7674@gmail.com</u>; <u>ravinder.kumar@gkv.ac.in</u>

S.I. 1: Synthesis of pure SnO₂ nanoparticles.

S.I. 2: Synthesis of pure Ag₃PO₄ nanoparticles.

S.I. 3: Characterization details.

S.I. 4: Equations used for kinetic studies.

Tables

Table S1: FTIR bands of Ag₃PO₄/SnO₂ nanocomposite.

Table S2: A comparison of synthesized nanocomposite with nano-catalysts reported in

literature which have been used for photocatalytic IPU degradation.

Figures

Figure S1: Powder XRD patterns comparison of Ag₃PO₄/SnO₂ nanocomposite, pure Ag₃PO₄

nanoparticles and pure SnO2 nanoparticles.

Figure S2: W-H plot of Ag₃PO₄/SnO₂ nanocomposite.

Figure S3: Core level XPS spectrum of Phosphorus.

Figure S4: HRMS of isoproturon (a) 0 min and (b) 120 min of light irradiation.

S.I. 1. Synthesis of SnO₂:

The SnO₂ nanoparticles were synthesized using hydrothermal method. 0.11 mmol of $SnCl_2 \cdot 2H_2O$ was prepared in 40 mL of MeOH. Then about 20 mL of H_2O_2 was added slowly in the above solution. Then solution was stirred for 30 minutes. Then the solution was and heated in Teflon-lined stainless-steel autoclave at 150 °C for 15 hours. The synthesised nanoparticles were centrifuged, washed with excess methanol and dried in oven at 80 °C for 6 hours.

S.I. 2. Synthesis of Ag₃PO₄:

The Ag₃PO₄ nanoparticles were synthesized using hydrothermal method. 2.94 mmol of AgNO₃ were dissolved in 30 mL of distilled water. In another beaker 1 mmol of Na₂HPO₄ was dissolved in distilled water. After both the solutions were clear, Na₂HPO₄ solution was added slowly in AgNO₃ solution. Formation of yellow coloured precipitate was observed. Then the solution was put in Teflon-lined stainless-steel autoclave and heated at 150 °C for 15 hours. The yellow-coloured nanoparticles were centrifuged, washed with distilled water and dried in oven at 80 °C for 6 hours.

S.I. 3. Characterization details

For SEM images, Gemini SEM 500 scanning electron microscope (SEM) was used. A Jeol IT200 was used to record the element mapping. Thermo Scientific Nicolet iS50 FTIR tridetector was used to observe FTIR. Rigaku MiniFlex instrument was used to generate X-ray diffraction (XRD) patterns having Cu filament of K_{α} =1.54Å and scanning rate of 3 degree per minute at room temperature. BET adsorption-desorption isotherms were performed using Microtrac BELSORP Mix II at 77 K. UV–vis spectra were recorded by Michelson Interferometer FTIR Spectrophotometer. Shimadzu UV-1800 spectrophotometer which utilize a precision Czerny-Turner optical system was used for taking UV–visible diffuse reflectance spectrum. X-ray photoelectron spectroscopy (XPS) was performed by a Shimadzu AXIS Supra⁺ having Al K_a X-ray.

S.I. 4. Equations used for kinetic studies

$$-\frac{dC_P}{d_t} = \frac{k_{deg}KC_P}{1+KC_P} \tag{1}$$

$$\frac{-t}{C_P - C_{P,0}} = \frac{1}{k_{deg} * K} \times \frac{\ln\left(\frac{C_P}{C_{P,0}}\right)}{C_P - C_{P,0}} + \frac{1}{k_{deg}}$$
(2)

$$ln\frac{C_P}{C_{P,0}} = -k_1 t \tag{3}$$

Tables:

Table S1: FTIR bands of Ag₃PO₄/SnO₂ nanocomposite

Peak (cm ⁻¹)	About	Reference	
1119	Antisymmetric streching of	(1)	
	P-O bonds	(1)	
949	PO ₄ ³⁻ stretching	(2)	
663	P-O-P Streching	(3)	
627	O-Sn-O Stretching	(4)	
544	Asymmetric Bending of	(2)	
	O=P-O bond	(2)	
500	Sn-O Streching	(4)	

 Table S2: A comparison of synthesized nanocomposite with nano-catalysts reported in literature which have been used for photocatalytic IPU degradation

Catalyst	Synthesis	Concentration	Amount of	UV lamp	Degradation	Time	Ref.
	method	of IPU	Catalyst	power	efficiency		
TiO ₂ functionalized	Electrospinning	0.5-1 mg/L		300 Watt	100%	8 hours	(5)
silica nanofibrous	and dip-coating						
membranes	method						
SnS ₂ /RGO	Hydrothermal	10mL solution	2mg	65 Watt	Rate constant		(6)
nanocomposite	method	of concentration			0.0219 min ⁻¹		
		1ppm					
GO-TiO ₂ catalyst	Hydrothermal	5mg/L	200mg/L	15 Watt	About 100%	300 min	(7)
	method						
PAN/Ag-	Coaxial	15mg/L(50mL	0.1g	500 Watt	87.9%	60 min	(8)
AgBr@Bi20TiO32	electrospinning	solution)					
	method						
TiO ₂	Dip coating	10mg/L		Two 60 Watt	57.07%	120 min	(9)
	method			lamps and four			
				15 watt lamps			

TiO ₂ /HY composite	Solid state	1.14×10^{-4}	50mg	intensity	100%	120min	(10)
	dispersion	M(50mL)		\sim 75mWcm ⁻²			
	method						
Fe-BTC MOF @ aramid	layer-by-layer	5mg/L(50mL)	3cm×3cm	300 watt	90%	7 hours	(11)
fabric (Fe-BTC@AF)	in situ self-						
composite	assembly						
	methods						
Yb ³⁺ doped	Hydrothermal	15mg/L(50mL)	50mg	500 watt	90.2%		(12)
microspherical BiOI	method						
Bismuth modified porous	Impregnating	1.14×10^{-4}		250kW	100%	120 min	(13)
silica (Bi ₂ SiO ₅)	method	mol/L					
Ag ₃ PO ₄ /SnO ₂	Hydrothermal	1ppm	0.1g	125 Watt	97%	120 min	Current
	method						work

Figures:

Figure S1: Powder XRD patterns comparison of Ag₃PO₄/SnO₂ nanocomposite, pure Ag₃PO₄ nanoparticles and pure SnO₂ nanoparticles.

Figure S2: W-H plot of Ag₃PO₄/SnO₂ nanocomposite.

Figure S3: Core level XPS spectrum of Phosphorus.

Figure S4: HRMS of isoproturon (a) 0 min and (b) 120 min of light irradiation.

References

- 1. Kumar S, Surendar T, Baruah A, Shanker V. Synthesis of a novel and stable g-C₃N₄-Ag₃PO₄ hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation. J Mater Chem A. 2013;1(17):5333–40.
- 2. Nagajyothi PC, Sreekanth TVM, Ramaraghavulu R, Devarayapalli KC, Yoo K, Vattikuti SVP, et al. Photocatalytic dye degradation and hydrogen production activity of Ag₃PO₄/g-C₃N₄ nanocatalyst. J Mater Sci Mater Electron. 2019;30(16):14890–901.
- 3. Mroczkowska M, Nowinski JL, Zukowska GZ, Mroczkowska A, Garbarczyk JE, Wasiucionek M, et al. Micro Raman, FT-IR/PAS, XRD and SEM studies on glassy and partly crystalline silver phosphate ionic conductors. J Power Sources. 2007;173(2 SPEC. ISS.):729–33.
- 4. Kumar V, Govind A, Nagarajan R. Optical and photocatalytic properties of heavily F-doped SnO₂ nanocrystals by a novel single-source precursor approach. Inorg Chem. 2011;50(12):5637–45.
- 5. Loccufier E, Deventer K, Manhaeghe D, Van Hulle SWH, D'hooge DR, De Buysser K, et al. Degradation kinetics of isoproturon and its subsequent products in contact with TiO₂ functionalized silica nanofibers. Chem Eng J. 2020;387(September 2019).
- 6. Dashairya L, Sharma M, Basu S, Saha P. SnS₂/RGO based nanocomposite for efficient photocatalytic degradation of toxic industrial dyes under visible-light irradiation. J Alloys Compd. 2019;774:625–36.
- Luna-Sanguino G, Ruíz-Delgado A, Tolosana-Moranchel A, Pascual L, Malato S, Bahamonde A, et al. Solar photocatalytic degradation of pesticides over TiO₂-rGO nanocomposites at pilot plant scale. Sci Total Environ. 2020;737:140286.
- 8. Mao Z, Xie R, Fu D, Zhang L, Xu H, Zhong Y, et al. PAN supported Ag-AgBr@Bi²⁰TiO₃₂ electrospun fiber mats with efficient visible light photocatalytic activity and antibacterial capability. Sep Purif Technol. 2017;176:277–86.
- 9. Espino-Estévez MR, Fernández-Rodríguez C, González-Díaz OM, Navío JA, Fernández-Hevia D, Doña-Rodríguez JM. Enhancement of stability and photoactivity of TiO₂ coatings on annular glass reactors to remove emerging pollutants from waters. Chem Eng J. 2015;279:488–97.
- 10. Sharma MVP, Lalitha K, Durgakumari V, Subrahmanyam M. Solar photocatalytic mineralization of isoproturon over TiO₂/HY composite systems. Sol Energy Mater Sol Cells. 2008;92(3):332–42.
- 11. Zhang H, Wu S, Zhang Y, Mao Z, Zhong Y, Sui X, et al. Fabrication of Fe-BTC on aramid fabrics for repeated degradation of isoproturon. Environ Sci Pollut Res. 2023;30(12):35214–22.
- Zhang L, Ma Z, Xu H, Xie R, Zhong Y, Sui X, et al. Preparation of upconversion Yb³⁺ doped microspherical BiOI with promoted photocatalytic performance. Solid State Sci. 2018;75:45–52.

13. Police AKR, Basavaraju S, Valluri DK, Machiraju S. Bismuth modified porous silica preparation, characterization and photocatalytic activity evaluation for degradation of isoproturon. J Mater Sci Technol. 2013;29(7):639–46.