Carbon injection potential of the mesopelagic-migrant pump in the Southern Ocean during summer

Authors

Katherine Baker^{1,2}, Svenja Halfter^{1,3}, Ben Scoulding⁴, Kerrie M. Swadling^{1,2}, Shane A. Richards⁵, Matthieu Bressac^{1,6}, Caroline Sutton⁴, and Philip W. Boyd^{1,2}

¹ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia

² Australian Antarctic Program Partnership, University of Tasmania, Hobart, Tasmania, Australia

³ National Institute of Water and Atmospheric Research, Wellington, New Zealand

⁴Environment, CSIRO, Hobart, Tasmania, Australia

⁵ School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia

⁶ Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France

Supplementary Material

1 Acoustics

The RV Investigator's Simrad EK80 echosounders continuously recorded calibrated acoustic data within a vertical range of 1500 m. Pulses lasting 2.048 ms were emitted every 2-3 s from split-beam transducers operating at 18, 38, 70, 120, and 200 kHz, mounted on the vessel's retractable keel. The acoustic data, visualized as echograms (refer to **Figure 5**), were processed using Echoview V.11.1.49 software in accordance with IMOS open ocean standards. Any instances of poor data quality, such as when equipment obstructed the acoustic beam, were identified visually and removed manually. Backscattering strengths (Sv; dB re 1 m² m⁻³) were calculated from the 'cleaned' echograms, averaging over 50 pings horizontally and 5 m vertically. Data from 30 m to 200 m depth, beyond the influence of bubble interference and the near-field for all transducers, were selected using a threshold of -

80 dB re 1 m² m⁻³. Daytime and nighttime periods were defined as 10:00-14:00 hours and 00:00-03:00 hours, respectively.

2 Tables and Figures

Table 1 | Length to weight equations used to determine the carbon weight (CW; in mg) and dry weight (DW; in mg) of micronekton sampled with the RMT'16 net and mesozooplankton with the Neuston net. Lengths are given in total length (TL; mm) or standard length (SL; mm).

Taxonomic group	Length to CW	CW to DW *
Prawn ^{1,2,3} (Decapod)	$CW = 10^{(3.787 * log_10 (TL) - 3.972)} * 0.435$	$DW = CW/0.42^{(10)}$
Crustacean ^{1,2,4} (amphipod)	$CW = 10^{(2.717 * log_10 (TL) - 1.911)} * 0.345$	$DW = CW/0.37^{(11)}$
Krill ^{1,2}	$CW = 10^{(3.23 * log_10 (TL) - 3.261)} * 0.419$	$DW = CW/0.39^{(10)}$
Chaetognath ^{1,2}	$CW = 0.0001352 * TL^{3.1545} * 0.367$	$DW = CW/0.39^{(10)}$
Fish ^{1,5,6} (Myctophidae)	$CW = 10^{(2.902 * log_10 (SL) - 1.797)} \\ * 0.092$	$DW = CW/0.44^{(10)}$
Gelatinous ^{1,7,8} (jellyfish)	CW = 10^ (2.767*log_10 (TL)-3.643)	$DW = CW/0.11^{(12)}$
Pyrosome ^{1,9}	$CW = (0.0013 * TL^2 + 0.0151 * TL) * 39.2$	$DW = CW/0.35^{(9)}$
Salp ^(this study)	CW = -0.0069TL2 + 0.7618TL - 14.446	DW = CW/0.20 (this study)
Copepod ⁴ (<i>R. gigas</i>)	$DW = 0.0822 * e^{(0.4079 * TL)}$	NA
Copepod ⁴ (<i>Oithona</i> spp.)	L = 0.75 mm DW= 0. 0094 mg	NA
Copepod ¹⁸ (<i>N. tonsus</i>)	DW = 469.64 * TL - 1123.06	NA

*Superscripts denote references

Table 2 | Regressions used to calculate respiratory oxygen uptake (RO; μ L O₂ ind. h⁻¹); RQ = respiratory quotient; DW = dry weight of an individual in milligrams; D = depth in meters; T = temperature in Celsius.

Taxonomic group	Weight to RO	RQ
Prawn ^{1,11, 13} (Decapod)	$RO = e^{(-0.2512 + 0.7886 * ln(DW))} + 0.0490 * T)$	0.97
Crustacean ^{1, 14} (amphipod)	$RO = e^{(19.191 + 0.766 ln(DW) - 5.256)} + (1000/(T + 273.15)) - 0.113ln(D))$	1.45
Krill ^{1,15}	$RO = e^{(0.392 + 0.753 ln(DW) + 0.046)} + (1000/(T + 273.15)) - 0.107ln(D)$	1.7
Chaetognath ^{1,14}	$RO = e^{(18.327 + 0.766 ln(DW) - 5.256)} + (1000/(T + 273.15)) - 0.113ln(D - 0.448))$	1.67
Fish ^{1,16} (Myctophidae)	$RO = e^{(26.083 + 0.885 ln(DW) - 7.374)} + (1000/(T + 273.15)) - 0.124ln(D))$	2.5
Gelatinous ^{1,11} (jellyfish)	$RO = e^{(-0.2512 + 0.7886 * ln(DW))} + 0.0490 * T)$	0.97
Pyrosome ^{1,9}	$RO = e^{(21.917 + 0.762 ln(DW) - 5.739)} + (1000/(T + 273.15)) - 0.269ln(D))$	2.8
Salp ^{1,17}	$RO = e^{(21.917 + 0.762 ln(DW) - 5.739)} + (1000/(T + 273.15)) - 0.269ln(D))$	1.6
Copepod ^{1,12}	$RO = e^{(18.775 + 0.766 * \log(DW))} + \left(-5.256 * \left(\frac{1000}{T + 273.15}\right)\right) - 0.113 * \log(D)$	1.58

Table 3 | Gut flux (gut carbon; GC) parameters; ISF = index of stomach fullness in % of total body weight; DW = dry weight in milligrams; CW = carbon weight in milligrams; GPT = gut passage time in hours; T = temperature in degrees Celsius.

Taxonomic group	ISF	GPT (h)
Prawn ¹ (Decapod)	0.0104 *DW	1.5
Crustacean ¹ (amphipod)	5.3	4.8
Krill ¹	1.2	2.3
Chaetognath ¹	36.6	10.96*e^0.086(T)
Fish ¹ (Myctophidae)	3.3	2.6
Gelatinous ¹ (jellyfish)	0.03 *CW	1.43
Cephalopod ¹	0.042	2
Pyrosome ^{1*}	NA	1.43
Salp ^{1*}	NA	1.43
Copepod ¹	1.2	1.04

*tunicates – fecal pellet production = 0.25 *CW; gut flux -> GF = (FP/24)*(GPT-DM)

Table 4 | Biomass (mg C m⁻³) and percentage contribution of micronekton taxa per site, depth, and time of day. E = epipelagic (0 - 200 m depth); UM = upper mesopelagic (200 - 400 m depth); LM = lower mesopelagic (400 - 1000 m depth).

		Depth		
Site	Taxon	Stratum	Day (mg C m^{-3})	Night (mg C m ⁻³)
	Crustacean			
SOTS	(other)	E	0.003	0.056
SOTS	Fish	Е	0.032	0.293
	Gelatinous			
SOTS	(other)	E	0.357	0.391
SOTS	Krill	Е	0.006	0.166
SOTS	P. atlanticum	Е	0.276	2.053
SOTS	S. thompsoni	Е	0.000	0.000
	Crustacean			
SOTS	(other)	UM	0.012	0.057
SOTS	Fish	UM	0.020	0.320
	Gelatinous			
SOTS	(other)	UM	0.040	0.047

SOTS P. atlanticum UM 2.789 0.036 SOTS S. thompsoni UM 0.000 0.000 Crustacean Crustacean Crustacean Crustacean Crustacean SOTS (other) LM 0.102 0.032 SOTS Fish LM 0.442 0.031 Gelatinous Conter Conter Conter SOTS (other) LM 0.059 0.019 SOTS Krill LM 0.011 0.005 SOTS F. atlanticum LM 0.021 0.097 SOTS S. thompsoni LM 0.000 0.000
SOTS S. thompsoni UM 0.000 0.000 Crustacean
Crustacean LM 0.102 0.033 SOTS (other) LM 0.442 0.033 SOTS Fish LM 0.442 0.033 Gelatinous
SOTS (other) LM 0.102 0.033 SOTS Fish LM 0.442 0.033 Gelatinous Gelatinous 0.019 0.019 SOTS (other) LM 0.059 0.019 SOTS Krill LM 0.011 0.005 SOTS Krill LM 0.011 0.005 SOTS <i>P. atlanticum</i> LM 0.021 0.097 SOTS <i>S. thompsoni</i> LM 0.000 0.000
SOTS Fish LM 0.442 0.031 Gelatinous Gelatinous
Gelatinous Gelatinous SOTS (other) LM 0.059 0.019 SOTS Krill LM 0.011 0.005 SOTS F. atlanticum LM 0.021 0.097 SOTS S. thompsoni LM 0.000 0.000
SOTS (other) LM 0.059 0.019 SOTS Krill LM 0.011 0.005 SOTS P. atlanticum LM 0.021 0.097 SOTS S. thompsoni LM 0.000 0.000
SOTS Krill LM 0.011 0.005 SOTS P. atlanticum LM 0.021 0.097 SOTS S. thompsoni LM 0.000 0.000
SOTSP. atlanticumLM0.0210.097SOTSS. thompsoniLM0.0000.000
SOTSS. thompsoniLM0.0000.000
Crustacean
P1 (other) E 0.006 0.011
P1 Fish E 0.007 0.187
Gelatinous
P1 (other) E 0.031 0.185
P1 Krill E 0.002 0.107
P1 P. atlanticum E 0.000 0.000
P1 S. thompsoni E 0.461 5.297
Crustacean
P1 (other) UM 0.012 0.014
P1 Fish UM 0.001 0.084
Gelatinous
PI (other) UM 0.396 0.165
PI Krill UM 0.003 0.0/5
P1 P. atlanticum UM 0.000 0.000
P1 S. thompsoni UM 2.624 0.883
Crustacean (14)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
PI Fish LM 0.680 0.284
B1 (other) IM 0.207 0.14
P1 (outer) LM 0.207 0.141 P1 Krill LM 0.060 0.027
P1 Kfill LM 0.060 0.032 P1 P_{1} P_{1} P_{1} P_{2}
P1 P. atlanticum LM 0.000 0.000 D1 G. d. I.M. 0.002 0.511
PI S. thompsoni LM 0.083 0.51
\mathbf{P}_{2} (other) \mathbf{F}_{1} 0.008 0.12
F2 (onlef) E 0.098 0.121 $P2$ Eich E 0.002 0.220
F2 F1SII E 0.003 0.235 Galatinous
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
P2 Krill E 0.001 0.036
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
12 5. mompson E 4.072 1.000 Crustacean
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
P2 Fish UM 0.060 0.322

	Gelatinous			
P2	(other)	UM	0.112	0.092
P2	Krill	UM	0.091	0.067
P2	P. atlanticum	UM	0.000	0.000
P2	S. thompsoni	UM	1.353	0.903
	Crustacean			
P2	(other)	LM	0.087	0.088
P2	Fish	LM	0.316	0.246
	Gelatinous			
P2	(other)	LM	0.398	0.106
P2	Krill	LM	0.038	0.030
P2	P. atlanticum	LM	0.000	0.000
P2	S. thompsoni	LM	0.080	0.179

Table 5 | Mean (\pm SD) downward carbon export (mg C m⁻² d⁻¹) where BGP = BiologicalGravitational Pump measured using sediment traps deployed at the base of the epipelagic(between 179 – 200 m depth); Micro = micronekton component of the Mesopelagic MigrantPump (MMP); Meso = mesozooplankton component of the MMP.

Site	Pump	$mg C m^{-2} d^{-1}$	sd mg C m ⁻² d ⁻¹
SOTS	BGP	106.53 (± 29.33)	29.33
SOTS	Micro	4.98 (± 1.47)	1.47
SOTS	Meso	1.26	NA
P1	BGP	111.93 (± 14.95)	14.95
P1	Micro	9.03 (± 6.29)	6.29
P1	Meso	63.13	NA
P2	BGP	79.8 (± 7.55)	7.55
P2	Micro	7.87 (± 1.63)	1.63
P2	Meso	67.48	NA

Figure 1. Dominant fish families in percentage of total biomass observed per site and depth stratum. Epi = epipelagic (0 - 200 m depth); Meso = upper mesopelagic (200 - 400 m depth); Lmeso = lower mesopelagic (400 - 1000 m depth).

Figure 2. Dominant crustacean taxa in percentage of total biomass observed per site and depth stratum. Epi = epipelagic (0 - 200 m depth); Meso = upper mesopelagic (200 - 400 m depth); Lmeso = lower mesopelagic (400 - 1000 m depth).

Figure 3. Dominant krill species in percentage of total biomass observed per site and depth stratum. Epi = epipelagic (0 - 200 m depth); Meso = upper mesopelagic (200 - 400 m depth); Lmeso = lower mesopelagic (400 - 1000 m depth).

Figure 4. Dominant prawn species in percentage of total biomass observed per site and depth stratum. Epi = epipelagic (0 - 200 m depth); Meso = upper mesopelagic (200 - 400 m depth); Lmeso = lower mesopelagic (400 - 1000 m depth).

Figure 5. Dominant gelatinous taxa in percentage of total biomass observed per site and depth stratum. Epi = epipelagic (0 - 200 m depth); Meso = upper mesopelagic (200 - 400 m depth); Lmeso = lower mesopelagic (400 - 1000 m depth).

3 References

¹Kwong, L. E., Henschke, N., Pakhomov, E. A., Everett, J. D., & Suthers, I. M. (2020). Mesozooplankton and micronekton active carbon transport in contrasting eddies. *Frontiers in Marine Science*, *6*. https://doi.org/10.3389/fmars.2019.00825

²Kiørboe, T. (2013). Zooplankton body composition. *Limnol. Oceanogr.* 58, 1843–1850. doi:10.4319/lo.2013.58.5.1843.

³Podeswa, Y. (2012). Active carbon transport and feeding ecology of pelagic decapods in the North Pacific subtropical gyre. *MS Thesis, Univ. Br. Columbia, Vancouver*.

⁴Mizdalski, E. (1988). Weight and length data of zooplankton in the Weddell Sea in austral spring 1986 (ANT V/3). *Ber. Polarforsch.* 55. ISSN 0176-5027

⁵Childress, J. J., Cowles, D. L., Favuzzi, J. A., and Mickel, T. J. (1990). Metabolic rates of benthic deep-sea decapod crustaceans decline with increasing depth primarily due to the decline in temperature. *Deep Sea Res. Part A. Oceanogr. Res. Pap.* 37, 929–949. doi:10.1016/0198-0149(90)90104-4.

⁶Davison, P. C. (2011). The export of carbon mediated by mesopelagic fishes in the Northeast Pacific Ocean. *PhD Thesis, Univ. California, San Diego USA*.

⁷Haddad, M.A., and Nogueira, M. (2006). Reappearance and seasonality of *Phyllorhiza punctate* von Lendenfeld (Cnidaria, Scyphozoa, Rhozostomeae) medusae in southern Brazil. *Rev. Brazs. Zool.* 23(3): 824-831.

⁸Uye, S., and Simauchi, H. (2005). Population biomass, feeding, respiration and growth rates, and carbon budget of the scyphomedusa *Aurelia aurita* in the Inland Sea of Japan. *J. Plankt. Res.* 27(3): 237-248. doi.org/10.1093/plankt/fbh172

⁹Henschke, N., Pakhomov, E. A., Kwong, L. E., Everett, J. D., Laiolo, L., Coghlan, A. R., et al. (2019). Large vertical migrations of *Pyrosoma atlanticum* play an important role in active carbon transport. *J. Geophys. Res. Biogeosciences* 124, doi:10.1029/2018JG004918.

¹⁰Davis, C. S., and Wiebe, P. H. (1985). Macrozooplankton biomass in a warm-core Gulf Stream ring: time series changes in size structure, taxonomic composition, and vertical distribution. *J. Geophys. Res.* 90, 8871–8884. doi:10.1029/JC090iC05p08871.

¹¹Ikeda, T. (1985). Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. *Marine Biology*, *85*, 1–11.

¹² Ikeda, T. (2014). Synthesis toward a global model of metabolism and chemical composition of medusae and ctenophores. *J. Exp. Mar. Bio. Ecol.* 456, 50–64. doi:10.1016/j.jembe.2014.03.006.

¹³Pakhomov, E. A., Podeswa, Y., Hunt, B. P. V, Kwong, L. E., and Woodson, C. B. (2019). Vertical distribution and active carbon transport by pelagic decapods in the North Pacific Subtropical Gyre. *ICES J. Mar. Sci.* doi:10.1093/icesjms/fsy134.

¹⁴Ikeda, T. (2014). Synthesis toward a global model of metabolism and chemical composition of medusae and ctenophores. *J. Exp. Mar. Bio. Ecol.* 456, 50–64. doi:10.1016/j.jembe.2014.03.006.

¹⁵Ikeda, T. (2013). Respiration and ammonia excretion of euphausiid crustaceans: Synthesis toward a global-bathymetric model. *Mar. Biol.* 160, 251–262. doi:10.1007/s00227-012-2150-z.

¹⁶Ikeda, T. (2016). Routine metabolic rates of pelagic marine fishes and cephalopods as a function of body mass, habitat temperature and habitat depth. *Journal of Experimental Marine Biology and Ecology*, *480*, 74–86. https://doi.org/10.1016/j.jembe.2016.03.012

¹⁷Stone, J. P., & Steinberg, D. K. (2016). Salp contributions to vertical carbon flux in the Sargasso Sea. *Deep-Sea Research I*, *113*, 90–100. https://doi.org/10.1016/j.dsr.2016.04.007

¹⁸Halfter, S., Cavan, E. L., Butterworth, P., Swadling, K. M., and Boyd, P. W. (2021). "Sinking dead"—How zooplankton carcasses contribute to particulate organic carbon flux in the subantarctic Southern Ocean. *Limnology and Oceanography*, 67, 13–25. https://doi.org/10.1002/lno.11971