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1 SUPPLEMENTARY METHODS

1.1 Eccentricity and cell shape

To study cell elongation we fit an ellipse to the cell shape. We fit the major axis A and minor axis B of an
ellipse such that its moment of inertia is equal to the moment of inertia of the cell shape. The details of this
procedure can be found in the supplements of (Rens and Merks, 2017) . The eccentricity of the cell is then
defined as

e =

√
1− B2

A2
. (S1)

Clearly, e ≈ 1 if the cell is elongated since in this case A ≫ B . Likewise, e = 0 if A = B which is the
case when the cell is completely circular.

When the ellipse is fitted, we not only compute the length of the major axis and the minor axis, but also
the unit vectors vA and vB such that the ellipse is parameterized by

ccell + Ava sin(2πt) +BvB cos(2πt) (S2)

for t ∈ [0, 1) and with ccell the center of the cell.

The vector vA is used to quantify the direction of the cell elongation. To be more precise, given a unit
vector v in a direction to which we want to compare the direction of elongation, then the amount of
alignment between v and vA is the absolute value of the inner product between v and vA. We take the
absolute value since we do not want to distinguish the directions v from −v nor the directions vA from
−vA.

We quantified the difference in cell area, the number of lattice sites equal to the spin of the cell, from the
starting area of the cell which is chosen to be 800 lattice sites.

1.2 Order Parameter

Measuring the alignment of directed objects arises repeatedly in mathematical modeling. The order
parameter is a quantity that is 0 when these objects point in different directions, and is 1 if they point in the
same direction. Here we used an order parameter to quantify the alignment of collagen strands. Specifically,
we are interested in quantifying the alignment of a set of unit vectors v1, . . . , vm in the way of an order
parameter.

A commonly used order parameter is obtained by measuring the angles of these unit vectors with the
x-axis to obtain angles θ1, . . . , θm ∈ [0, π). One has to be careful when measuring these angles as to obtain
angles between 0 and π radians, always choosing the minimum of the angle between vi and either (1, 0) or
(−1, 0). Finally, the order parameter Sangle is the modulus of the complex number 1

m

∑m
j=1 exp(2θji) with

i2 = −1.

We used a different but equivalent method to compute the order parameter which was inspired by the
introduction of a paper on the theory of Q-tensors of liquid crystals (Borthagaray et al., 2020). This method
does not require the careful angle measurements as it uses the vectors v1, . . . vm directly. We compute the
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order parameter S as the largest eigenvalue of the Q-matrix

Q =
1

m

m∑
j=1

2viv
⊤
i − I, (S3)

with I the 2× 2 identity matrix.

We will now show that these two methods are equivalent by showing that S = Sangle. First we measure
the angles θ1, . . . , θm as described above. Next, we consider the vectors wi = (cos(θi), sin(θi)) for
i = 1, . . . ,m. Since wi = ±vi and hence wiw

⊤
i = viv

⊤
i we compute that Q is of the form

Q =
1

m

(∑m
j=1 cos(2θj)

∑m
j=1 sin(2θj)∑m

j=1 sin(2θj) −
∑m

j=1 cos(2θj)

)
, (S4)

where we used the standard trigonometric identities 2 cos2(x)− 1 = cos(2x) = 1− 2 sin2(x). The positive
eigenvalue S of Q is then easily recognized, since Q is a symmetric traceless 2× 2 matrix, as

S =

√√√√√ 1

m

m∑
j=1

cos(2θj)

2

+

 1

m

m∑
j=1

sin(2θj)

2

,

which is equal to Sangle.

Now we use S in two different ways. To compute the global order parameter Sglobal and to compute the
local order parameter Slocal. The difference between Sglobal and Slocal stems from the sampling of the unit
vectors used to compute them.

The global order parameter Sglobal is computed as follows. Suppose that x1, . . . , xn ∈ R2 are the positions
of the beads of the network. Then for each bond (i, j) in the network we define v(i,j) =

xi−xj
∥xi−xj∥ and we

compute the order parameter using all these vectors as input.

The local order parameter Slocal is computed by binning the network in bins of size l × l. Then, for
each bin we compute the local order parameter with all bonds that fall in that bin as with the global order
parameter. Some bonds are quite long and might cross a bin but might not give a contribution to the order
parameter as both end points might lie outside of the bin. To remedy this, we refined the network by
interpolating each bond (i, j) in the network with segments of length 1 before computing the local order
parameter.

1.3 Measurement of time between onsets

We study locally the the rearrangement of collagen fibers and the spreading of the cell. As the CPM is a
discrete model, there is no obvious continuous spreading parameter. We used the binning procedure as in
the computation of the local order parameter. We binned the network into square bins of 5× 5 lattice sites.
For each of these lattice sites we computed the order parameter Slocal(t) over time and we quantified the
amount of spreading in that bin as

Clocal(t) =
number of positive spins in this bin

25
. (S5)
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This gives curves Slocal(t) and Clocal(t) as shown in Figure 4(A) in the main text.

Since we observe that these curves, when the cell makes a pseudopodium, both increase from low to high,
we want to quantify the difference in onset of this increase. To this end, we fit sigmoidal functions

σL,k,x0(t) =
L

1 + exp(−k(x− x0))
, (S6)

to the curves Slocal(t) and Clocal(t) and we obtain parameter sets
(
Lcell, kcell, x0,cell

)
and

(
LS, kS, x0,S

)
.

The difference in onset between Slocal(t) and Clocal(t) is then the number x0,S − x0,cell .

2 SUPPLEMENTARY TABLES AND FIGURES

2.1 Figures

Figure S1. Final cell areas after spreading on a regular ECM with a contraction of 1. The ϕs parameter
describes the slip-regime of the FAs. The cell spreads on stiffer substrates when a higher slip parameter is
used.
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Figure S2. We investigated cell spreading on an isotropic matrix with varying stiffness and with varying
cell contraction forces. On soft matrices, we see a large difference between contractile and non-contractile
cells with contractile cells spreading the least. This difference decreases when the substrate stiffness is
increased and finally disappears when the substrate is too stiff for the cell to spread at all.
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Figure S3. Here varied the bending modulus parameter of the fibers. With low bending modulus,
we find the cell aligning with the fibers in the ECM. With higher bending modulus more protrusions
orthogonal to the fiber orientation stabilize creating less smooth boundaries seeming to hinder cell alignment.
However, the cellular eccentricities do not decrease on anisotropic ECMs with higher bending modulus.
A: Screenshots of lower and higher bending modulus simulation. B: Eccentricities for different bending
moduli.
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Figure S4. The cell elongates orthogonal to the substrate’s orientation (the x-axis) when the substrate is
stiff, here the spring constant is taken to be 0.031Nm−1. A-D: The major axis of an ellipse fitted to the cell
is shown for different number of cross-linkers. For elongated cells, shown with a darker color, on highly
cross-linked matrices, the major axis is close to the y-axis, showing that the cells are aligned to the y-axis.
E: A barplot showing the degree of alignment with the y-axis for different cross-link densities.
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Figure S5. The relation of the global order parameter of the ECM on the final eccentricity of the cell. We
see a gradual increasing effect, The relation between the cell’s eccentricity and the order parameter of an
ECM with a cross-link density of 3.8µm−2 and fibers of stiffness 0.031Nm−1.
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Figure S6. To illustrate that the cell does not remodel the ECM when contraction force is lowered to
a tenth of the original force, we selected a protrusion on the right side of the cell and computed the
functions Si(t) and Ci(t) for 4× 4 bins around the protrusion. The functions Si(t) and Ci(t) do not show
the same as in Figure 4(A) (A), and hence sigmoidial functions can not be fitted. As the contraction
force is lowered, there is less remodeling of the network and S is close to constant while the cell spreads.
Note that S is relatively high, hence the cell is able to spread here. We compared the difference in final
remodeling between the high contraction force situation of Figure 4 and the lower contraction force by
studying ∆Si = Si(10000) − Si(0). We find a significance difference between the distributions, with
higher contraction force leading to more realignment and lower contraction force leading to near zero
alignment (B). A: Screen shot of initial configuration and final configuration and a pair of representative
functions Si(t) and Ci(t). B: Distribution of ∆S around a protrusion for a highly contractile cell and a less
contractile cell. Means of the distributions are significantly different (Welch t-test, p = 0.01).
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Figure S7. The CPM runs on a grid of fixed size. Here we double the CPM resolution to see if the cell
alignment effects depends on grid size. The resolution is doubled by increasing the integration domain to
400× 400, re-scaling the CPM-parameters according to Magno et al. (2015), and doubling the length of
the strands. A: Screenshots of the high resolution simulation. B: Boxplots of eccentricities, showing that
the cell alignment is not dependent on CPM resolution.
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Figure S8. The percolation of the network was measured by computing the giant component, the number
of beads of the largest connected component, for networks of different cross-linker densities. We repeated
this computation 10 times for each network and we found a sharp transition in the giant component.
We conclude that the percolation threshold of the type of networks discussed in this paper is around a
cross-linking density of 1.0µm−2.
.

Figure S9. We studied average FA turnover times in isotropic and anisotropic ECMs. FA degradation
is a complex process which involves different pathways that also effect cell polarity. In our model, FA
degradation happens only at the cell-medium interface when the cell ruptures a FA. Hence, if FAs are
transported away from the boundary their turnover time can be infinite. In this figure infinite turnover times
are removed and hence only the FA turnover at the boundary is considered. We find no significant effects
in FA turnover time between isotropic and anisotropic ECMs (A,B). FA orientation relative to the ECM
anisotropy axis does not change FA turnover time (C).

8



Video S1: Cell on a regular, soft ECM does not spread fully (K = 0.016Nm−1).

Video S2: Cell on a regular, stiff ECM spreads to full size (K = 0.062Nm−1).

Video S3: Cell on a regular, stiff ECM spreads to full size (K = 0.062Nm−1, contraction 10× higher).

Video S4: Cell spreading on a network-like ECM with soft fibers (K = 0.031Nm−1, cross-link density of
0.96, µm−2).

Video S5: Cell spreading on a network-like ECM with stiff fibers (K = 0.062Nm−1), cross-link density
of 0.96, µm−2).

Video S6: Cell elongating on an anisotropic ECM with soft fibers (K = 0.031Nm−1, cross-link density of
0.96, µm−2).

Video S7: Cell does not elongate on an anisotropic ECM with soft fibers (K = 0.093Nm−1, cross-
link density of 0.96, µm−2).

Video S8: Cell on anisotropic matrix with lower number of cross-linking (K = 0.062Nm−1, cross-
link density of 0.48, µm−2).

Video S9: Cell on anisotropic matrix with high cross-linking (K = 0.062Nm−1, cross-link density
of 4.8, µm−2).

Video S10: Cell on anisotropic matrix with high cross-linking and stiff fibers, elongating orthogonal
to substrate orientation (K = 0.078Nm−1, cross-link density of 4.8, µm−2).
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