Tirzepatide, GIP(1-42) and GIP(1-30) display unique signaling profiles at two common GIP receptor variants, E354 and Q354

Tayla Anne Rees^{1,2,3*}, Benjamin John Buttle¹, Zoe Tasma^{1,2}, Sung-Hyun Yang¹, Paul W.R. Harris^{1,2,4,} Christopher Stuart Walker^{1,2*}

¹School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand

²Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand

³Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK

⁴School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand

Correspondence:

*Tayla Rees; <u>tayla.rees@kcl.ac.uk</u> and Christopher Walker; <u>cs.walker@auckland.ac.nz</u>

Supplemental Methods

General Procedure

All reagents were purchased as reagent grade and used without further purification. All amino acids utilised in the synthesis adopt the (L)-configuration. N,N-Diisopropylethylamine (DIPEA), piperidine, N,N-diisopropylcarbodiimide (DIC), 1,2-ethanedithiol (EDT) and triisopropylsilane (TIPS) were purchased from Sigma-Aldrich (St. Louis, Missouri). O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU), Fmoc-Ala-OH, Fmoc-Asn(Trt)-OH (Trt = triphenylmethane), Fmoc-Asp(tBu)-OH (tBu = tert-butyl), Fmoc-Gln(Trt)-OH, Fmoc-Glu(tBu)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc-lle-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH (Boc = tert-butoxycarbonyl), Fmoc-Met-OH, Fmoc-Phe-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Trp(Boc)-OH, Fmoc-Tyr(tBu)-OH and Fmoc-Val-OH were purchased from GL Biochem (Shanghai, China). 4-[(2,4-Dimethoxyphenyl)(Fmoc-amino)methyl]phenoxyacetic acid (Rink amide linker) was purchased from CS Bio (Shanghai, China). 6-Chloro-1-hydroxybenzotriazole (6-Cl-HOBt) was purchased from Aapptec (Louisville, Kentucky). Aminomethyl TentaGel® S resin was purchased from Rapp Polymere (Tübingen, Germany). Yields refer to chromatographically homogeneous materials. Semipreparative/analytical RP-HPLC was performed on a Thermo Scientific (Waltham, MA) Dionex Ultimate 3000 HPLC equipped with a four channel UV detector at 210, 225, 254 and 280 nm using either a Phenomenex analytical column (Torrance, CA), Gemini[®] C18 (5 µm; 4.6 × 150 mm) at a flow rate of 1.0 mL/min, or a Phenomenex semi-preparative column (Torrance, CA), Gemini[®] C18 (5 µm; 10 × 250 mm) at a flow rate of 4 mL/min. A suitably adjusted gradient of 5% B to 95% B was used for HPLC, where solvent A was 0.1% TFA in H₂O and B was 0.1% TFA in acetonitrile. LC-MS spectra were acquired using Agilent Technologies (Santa Clara, CA) 1260 Infinity LC equipped with an Agilent Technologies 6120 Quadrupole mass spectrometer. An Agilent C3 analytical column (3.5 µm; 3.0 × 150 mm) was used at a flow rate of 0.3 mL/min using a linear gradient of 5% B to 95% B over 30 min, where solvent A was 0.1% formic acid in H₂O and B was 0.1% formic acid in acetonitrile.

General Methods

Method 1: General procedure for attachment of Fmoc Rink amide to the resin:

To aminomethyl TentaGel[®] S resin (370 mg, 0.1 mmol, loading: 0.27 mmol/g) pre-swollen in CH₂Cl₂ (5 mL, 30 min), was added 4-[(2,4-dimethoxyphenyl)(Fmoc-amino)methyl]phenoxyacetic acid (Rink amide linker) (270.0 mg, 5 equiv., 0.5 mmol) and 6-Cl-HOBt (77.0 mg, 4.5 equiv., 0.45 mmol) dissolved in DMF (3.0 mL) followed by addition of DIC (78 μ L, 5 equiv., 0.5 mmol). The reaction mixture was gently agitated at room temperature for 24 h. The resin was filtered and washed with DMF (3 × 3.0 mL) after which a negative ninhydrin test confirmed successful coupling.

Method 2: General procedure for removal of N^{α} -Fmoc-protecting group:

Peptidyl resin was treated with a solution of 20% piperidine in DMF (4 mL, v/v) and the mixture was agitated at room temperature for 2 ×10 min. The resin was filtered and washed with DMF (3 × 3.0 mL).

Method 3: General coupling procedure for Fmoc-Ala-OH, Fmoc-Asn(Trt)-OH, Fmoc-Asp(*t*Bu)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(*t*Bu)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc-Ile-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Met-OH, Fmoc-Phe-OH, Fmoc-Ser(*t*Bu)-OH, Fmoc-Thr(*t*Bu)-OH, Fmoc-Trp(Boc)-OH Fmoc-Tyr(*t*Bu)-OH and Fmoc-Val-OH:

Manual Couplings were performed with the appropriate Fmoc-protected amino acid (0.5 mmol, 5.0 equiv.), HATU (181 mg, 0.475 mmol, 4.75 equiv.) and DIPEA (210 μ L, 1.2 mmol, 12 equiv.) in DMF (3.0 mL) for 45 min at room temperature. The resin was filtered and washed with DMF (3 × 3.0 mL).

Method 4: General procedure for TFA-mediated resin cleavage and global deprotection:

Peptidyl resin was treated with a mixture of TFA/H₂O/TIPS/EDT (91.5:5:2.5:1, v/v/v/v, 10 mL) for 120 min at room temperature. The resin was filtered, and the filtrate was partially concentrated under a gentle stream of N₂ gas, followed by the addition of cold diethyl ether to form a precipitate. The mixture was centrifuged, and the solution was carefully decanted and discarded. The diethyl ether wash was repeated twice before dissolving the solid pellet in H₂O:acetonitrile containing 0.1% TFA (1:1, v/v, 25 mL) and lyophilised.

Synthesis of GIP (1-30) using Fmoc-SPPS.

Scheme 1. Synthesis of GIP(1-30)

Synthesis of GIP(1-30) peptide

Fmoc-Rink amide was attached to aminomethyl TentaGel[®] S resin **S1** using **Method 1** followed by Fmoc-removal using **Method 2** to afford resin bound amine **S3**. Direct attachment of *C*-terminal amino acid, Fmoc-Lys(Boc)-OH to resinbound Rink amide **S3** was achieved using **Method 3**. **Method 2** was used for all subsequent N^{α} -Fmoc removals where appropriate. Linear elongation of the peptide chain was achieved by coupling appropriate Fmoc-amino acids indicated in **Scheme S1** using **Method 3**. ¹⁹Gln was coupled twice using fresh solutions of amino acid, HATU and DIPEA in DMF. Peptidyl resin **S4** was subjected to simultaneous global protecting group removal and resin cleavage using **Method 4**, affording crude peptide (300 mg). Crude peptide was purified batch-wise (10 mg of crude peptide) by semi-preparative RP-HPLC on a Phenomenex Gemini[®] C18 (5 µm, 10 × 250 mm) using a linear gradient of 5% to 95% over 90 min (*ca.* 1% B/min) with a flow rate of 4 mL/min. Fractions were collected at 0.2 min intervals and analysed by ESI-MS and RP-HPLC. Fractions identified with correct *m/z* were combined and lyophilised to afford GIP (1-30) peptide as a white amorphous solid. (9.7 mg, 27% yield based on 0.01 mmol scale)

Figure SC1. LCMS profile of purified GIP (1-30) peptide, ion polarity positive operating at a nominal accelerating voltage of 70 eV. ESI-MS (m/z [M+2H]²⁺ calcd: 1766.99; found 1766.1; [M+3H]³⁺ calcd: 1178.33; found: 1177.7; [M+4H]⁴⁺ calcd: 884.0; found: 883.5. Chromatographic separations were performed using an Agilent C3 analytical column (3.5 µm; 3.0 × 150 mm) and a linear gradient of 5-95% B over 30 min (*ca.* 3% B per min) at a flow rate of 0.3 mL/min. Buffer A: H₂O containing 0.1% formic acid (v/v); Buffer B: acetonitrile containing 0.1% formic acid (v/v).

Figure SC2: HPLC profile of purified GIP (1-30) peptide. Chromatographic separations were performed using a Phenomenex Gemini[®] C18 (5 μ m; 4.6 × 150 mm) and a linear gradient of 5-65% B over 60 min (*ca.* 1% B per min) at a flow rate of 1.0 mL/min. Buffer A: H₂O containing 0.1% TFA (*v/v*); Buffer B: acetonitrile containing 0.1% TFA (*v/v*).

	10	20	30	40
GIP(1-42):	YAEGTFISDYS	IAMDKIHQQDFVN	WLLAQKGKKNDW	VKHNITQ
GIP(1-30):	YAEGTFISDYS	IAMDKIHQQDFVN	WLLAQK-NH2	
Tirzepatide:	YXEGTFTSDYS	IXLDKIAQKAFV	QWLIAGGPSSGAE	PPS
		C20	FATTY DIACID	

Figure S1: Sequence of peptides used. X = Aib, 2-Aminoisobutyric acid.

Figure S2: cAMP accumulation in vector (pcDNA3.1) transfected Cos7 cells. Data were normalized to the maximal cAMP produced by GIP(1-42) at the WT human GIP receptor and expressed as a percentage. Data points are the mean \pm s.e.m of the combined data from three independent experiments.

Figure S3: Human WT GIP receptor time course of cAMP accumulation by 100 nM GIP(1-42), GIP1-30), Tirzepatide, and media control in transfected Cos7 cells. Data are expressed as the fold change above the media-stimulated production of each signaling molecule. Data points are the mean ± s.e.m of the combined data from three independent experiments.

Supplemental Tables

GIP Receptor	Peptide	cAMP (nM)		IP1 (nM)		рАКТ		pERK1/2		pCREB	
		Emin	E _{max}	Emin	E _{max}	Emin	E _{max}	Emin	E _{max}	Emin	E _{max}
wt	GIP(1-42)	4.62 ± 0.71	34.2 ± 7.76	124 ± 26.8	245 ± 31.5	2176 ± 571	9186 ± 3379	43070 ± 6118	167768 ± 5869	25342 ± 8746	41709 ± 17541
	GIP(1-30)	4.52 ± 0.62	32.2 ± 8.97	139 ± 25.0	263 ± 50.0	2211 ± 443	8828 ± 3104	42093 ± 4410	177161 ± 8832	26907 ± 9741	45007 ± 20307
	Tirzepatide	4.52 ± 0.54	33.4 ± 8.46	118 ± 22.3	191 ± 18.1	2003 ± 528	8518 ± 3287	38531 ± 6580	148142 ± 2760	24314 ± 9065	41831 ± 19059
E354Q	GIP(1-42)	5.15 ± 0.79	35.5 ± 8.91	111 ± 29.5	178 ± 26.4	2181 ± 723	6372 ± 2555	44214 ± 12888	138058 ± 15843	25769 ± 12478	40843 ± 20525
	GIP(1-30)	5.00 ± 0.97	32.8 ± 7.78	115 ± 29.5	186 ± 24.3	2156 ± 483	5634 ±1817	43582 ± 12773	133276 ± 17603	27863 ± 13062	40158 ± 19643
	Tirzepatide	5.25 ± 0.74	32.5 ± 7.88	118 ± 27.8	167 ± 21.4	2100 ± 738	6250 ± 2787	40156 ± 13007	134832 ± 27518	27451 ± 13895	40839 ± 22194

Table S1: Summary of peptide Emin and Emax values at WT and E354Q GIP receptors in transfected Cos7 cells.

Data are the mean ± s.e.m of the combined data from 3 (pAKT, pERK1/2, pCREB) or 5 (cAMP, IP₁) independent experiments. E_{min} and E_{max} values are derived from the bottom and top of three or four-parameter curve fit. Values for cAMP and IP1 are expressed in nM, and values for pAKT, pERK1/2 and pCREB are arbitrary units.

Table S2: Summary of peptide relative efficacy ($\Delta \log(\tau/KA)$) and biased agonism ($\Delta \Delta \log(\tau/KA)$) values at WT and E354Q GIP receptors in transfected Cos7 cells.

GIP Receptor	Peptide	cAMP		IP1		рАКТ		pERK1/2		pCREB	
		Δlog(τ/K _A)	ΔΔlog(τ/K _A)								
wт	GIP(1-42)	0.00 ± 0.12	0.00 ± 0.17	0.00 ± 0.10	0.00 ± 0.15	0.00 ± 0.16	0.00 ± 0.20	0.00 ± 0.25	0.00 ± 0.28	0.00 ± 0.32	0.00 ± 0.34
	GIP(1-30)	0.10 ± 0.12	0.00 ± 0.17	0.18 ± 0.11	0.08 ± 0.16	0.09 ± 0.12	-0.01 ± 0.17	-0.05 ± 0.22	-0.15 ± 0.25	0.23 ± 0.30	0.13 ± 0.33
	Tirzepatide	-0.75 ± 0.32*	0.00 ± 0.45	-0.87 ± 0.29*	-0.12 ± 0.43	-1.16 ± 0.34*	-0.41 ± 0.46	-1.13 ± 0.43	-0.38 ± 0.54	-0.81 ± 0.48	-0.06 ± 0.58
E354Q	GIP(1-42)	0.00 ± 0.25	0.00 ± 0.36	0.00 ± 0.14	0.00 ± 0.29	0.00 ± 0.02	0.00 ± 0.25	0.00 ± 0.19	0.00 ± 0.32	0.00 ± 0.34	0.00 ± 0.42
	GIP(1-30)	0.19 ± 0.18	0.00 ± 0.26	-0.14 ± 0.10	-0.33 ± 0.21	0.01 ± 0.10	-0.18 ± 0.21	0.23 ± 0.30	0.04 ± 0.35	1.04 ± 0.48	0.85 ± 0.51
	Tirzepatide	-0.90 ± 0.43*	0.00 ± 0.60	-1.18 ± 0.34*	-0.28 ± 0.55	-1.32 ± 0.19*	-0.42 ± 0.47	-1.30 ± 0.38*	-0.40 ± 0.57	-1.27 ± 0.51	-0.37 ± 0.66

Data were analyzed using the Operational model of allosterism and are mean \pm s.e.m of the combined data from 3 (pAKT, pERK1/2, pCREB) or 5 (cAMP, IP₁) independent experiments. Statistical differences in relative efficacy between different agonists at the same receptor compared to GIP(1-42) or biased differences for the same agonist between different pathways compared to cAMP accumulation (biased agonism) were determined using a one-way ANOVA with post-hoc Dunnett's test on the $\Delta\Delta\log(\tau/K_A)$ values. *p < 0.05 compared to GIP(1-42) for relative efficacy ($\Delta\log(\tau/K_A)$) of each agonist at each pathway at each receptor. No significant differences in biased agonism ($\Delta\Delta\log(\tau/K_A)$) observed for agonists across pathways.