Supplementary Material

Playing It SMART: Increasing Transfer Student and URM Undergraduate Student Success through Undergraduate Research Combined with Group Support

- 1. Detailed Demographics, majors, Graduation status and STEM retention status of SMART program participants
- 2. SMART program application form
- 3. Student peer feedback on chalk talks
- 4. Pre-program student assessment form
- 5. Post-program student assessment form
- 6. Statistical analysis of the data
- 7. Sample responses from the anonymous student feedback

1. Detailed Demographics, majors, Graduation status and STEM retention status of SMART program participants

TR: Transferred from a 4-year university; CC-TR: Transferred from a community college; Non-TR: entered UNC-CH as a first year; B: Black or African American; H: Hispanic or Latino; AS: Asian; M: Middle Eastern; NA: Native American; W: Non-Hispanic White.

Student	Transfer Status	Gender	Ethniicty/race	Major	Graduation status	Retention status		
1	TR	Woman	AS	Math; Computer sci.	Graduated	Retained in a STEM major		
2	TR	Woman	AS	Biology	Graduated	Retained in a STEM major		
3	TR	Woman	AS	Biology Graduated		Retained in a STEM major		
4	TR	Woman	В	Psychology BS Graduated		Retained in a STEM major		
5	TR	Woman	В	Biology	Graduated	Retained in a STEM major		
6	TR	Woman	M	Math	Graduated	Retained in a STEM major		
7	TR	Woman	W	Biology	Graduated	Retained in a STEM major		
8	TR	Woman	W	Biology	Graduated	Retained in a STEM major		
9	TR	Woman	W	Biology	Graduated	Retained in a STEM major		
10	TR	Woman	W	Biology	Graduated	Retained in a STEM major		
11	TR	Woman	W	Biology	Graduated	Retained in a STEM major		
12	TR	Woman	W	Biology; Chemistry	Graduated	Retained in a STEM majo		
13	TR	Man	AS	Computer Sci.	Graduated	Retained in a STEM major		
14	TR	Man	AS	Chemistry	Graduated	Retained in a STEM major		
15	TR	Man	AS	Information Sci.; Computer Sci.	Graduated	Retained in a STEM major		
16	TR	Man	Н	Biology	Graduated	Retained in a STEM majo		
17	TR	Man	Н	Biology	Graduated	Retained in a STEM major		
18	TR	Man	W	Biomedical Engineering	Graduated	Retained in a STEM major		
19	TR	Man	W	Exercise & Sports Sci.	Graduated	Retained in a STEM major		
20	TR	Man	W	Biology	Graduated	Retained in a STEM major		
21	TR	Man	W	Math	Graduated	Retained in a STEM major		
22	TR	Man	W	Chemistry	Graduated	Retained in a STEM major		
23	TR	Man	W	Physics	Graduated	Retained in a STEM major		
24	TR	Man	W	Biology	Graduated	Retained in a STEM major		
25	TR	Man	W	Biology	Graduated	Retained in a STEM major		
26	TR	Man	W	Biology Graduated Biology Graduated		Retained in a STEM major		
27	TR	Woman	AS	Biology Still active		N/A		
28	TR	Woman	B			N/A		
29	TR	Woman	W	·		N/A		
30	TR	Man	AS	Physics Still active Biology Still active		N/A		
31	TR	Man	M	Biology	Still active	N/A		
32	TR	Man	W	Biology; Chemistry Still active		N/A		
33	TR	Man	W	Chemistry Still active		N/A		
34	CC-TR	Woman	AS	Chemistry	Graduated	Retained in a STEM major		
35	CC-TR	Woman	AS	Biology	Graduated	Retained in a STEM major		
36	CC-TR	Woman	В	Biology	Graduated	Retained in a STEM major		
37	CC-TR	Woman	В	Biology	Graduated	Retained in a STEM major		
38	CC-TR	Woman	В	Biology	Graduated	Retained in a STEM major		
39	CC-TR	Woman	В	Medical Anthropology	Graduated	Retained in a STEM major		
40	CC-TR	Woman	Н	Chemistry	Graduated	Retained in a STEM major		
41	CC-TR	Woman	Н	Applied math	Graduated	Retained in a STEM major		
42	CC-TR	Woman	Н	Biology	Graduated	Retained in a STEM major		
43	CC-TR	Woman	Н	Chemistry	Graduated	Retained in a STEM major		
44	CC-TR	Woman	Н	Psychology BS	Graduated	Retained in a STEM major		
45	CC-TR	Woman	Н	Chemistry	Graduated	Retained in a STEM major		
46	CC-TR	Woman	Н	Chemistry	Graduated	Retained in a STEM major		
47	CC-TR	Woman	Н	Biology	Graduated	Retained in a STEM major		
48	CC-TR	Woman	H	Biology	Graduated	Retained in a STEM major		
49	CC-TR	Woman	H	Biology	Graduated	Retained in a STEM major		
50	CC-TR	Woman	H	Biology	Graduated	Retained in a STEM major		
51	CC-TR	Woman	H	Biology	Graduated	Retained in a STEM major		
52	CC-TR	Woman	H	Biology	Graduated	Retained in a STEM major		
53	CC-TR	Woman	Н	Biology Graduated		Retained in a STEM major		
54	CC-TR	Woman	Н	Biology Graduated R		Retained in a STEM major		
55	CC-TR	Woman	M	Biology	Graduated	Retained in a STEM major		
56	CC-TR	Woman	M	Biology	Graduated	Retained in a STEM major		
57	CC-TR	Woman	M	Computer Sci.	Graduated	Retained in a STEM major		
58	CC-TR	Woman	M	Psychology BS	Graduated	Retained in a STEM major		
59	CC-TR	Woman	M	Clinical Lab Sciences	Graduated	Retained in a STEM major		
60	CC-TR	Woman	W	Psychology BS	Graduated	Retained in a STEM major		

61	CC-TR	Woman	W	Biology	Graduated	Retained in a STEM major	
62	CC-TR	Woman	W	Chemistry	Graduated	Retained in a STEM major	
63	CC-TR	Woman	W	Biology	Graduated	Retained in a STEM major	
64	CC-TR	Woman	W	Biology	Graduated	Retained in a STEM major	
65	CC-TR	Woman	W	Biology	Graduated	Retained in a STEM major	
66	CC-TR	Woman	W	Biology	Graduated	Retained in a STEM major	
67	CC-TR	Woman	W	Biology	Graduated	Retained in a STEM major	
68	CC-TR	Woman	W	Biology	Graduated	Retained in a STEM major	
69	CC-TR	Woman	W	Biology	Graduated	Retained in a STEM major	
70	CC-TR	Woman	AS	Chemistry	Graduated	Retained in a STEM major	
71	CC-TR	Man	В	Information Sci.	Graduated	Retained in a STEM major	
72	CC-TR	Man	В	Math	Graduated	Retained in a STEM major	
73	CC-TR	Man	Н	Biology	Graduated	Retained in a STEM major	
74	CC-TR	Man	Н	Biology	Graduated	Retained in a STEM major	
75	CC-TR	Man	Н	Chemistry	Graduated	Retained in a STEM major	
76	CC-TR	Man	Н	Biology	Graduated	Retained in a STEM major	
77	CC-TR	Man	Н	Biology	Graduated	·	
78	CC-TR	Man	Н	Biology	Graduated	Retained in a STEM major Retained in a STEM major	
79	CC-TR	Man	M	Biology	Graduated	Retained in a STEM major	
80	CC-TR		M		Graduated	·	
81		Man	M	Psychology BS		Retained in a STEM major	
82	CC-TR CC-TR	Man	W	Biology	Graduated	Retained in a STEM major	
83		Man	W	Biology	Graduated	Retained in a STEM major	
	CC-TR	Man		Biology	Graduated	Retained in a STEM major	
84	CC-TR	Man	W	Biology	Graduated	Retained in a STEM major	
85	CC-TR	Man	W	Biology	Graduated	Retained in a STEM major Retained in a STEM major	
86	CC-TR	Man	W	Biology	Graduated		
87 88	CC-TR	Man	W W	Biology	Graduated	Retained in a STEM major	
	CC-TR	Man		Math	Graduated	Retained in a STEM major	
89	CC-TR	Man	W	Physics	Graduated	Retained in a STEM major	
90	CC-TR	Man	W	Biology	Graduated	Retained in a STEM major	
91	CC-TR	Man	W	Chemistry	Graduated	Retained in a STEM major	
92	CC-TR	Man	W	Psychology BS	Graduated	Retained in a STEM major	
93	CC-TR	Man	W	Biology	Graduated	Retained in a STEM major	
94	CC-TR	Man	W	Psychology BS	Graduated	Retained in a STEM major	
95	CC-TR	Man	W	English	Graduated	Changd STEM major	
96	CC-TR	Woman	В	Psychology BS	Still active	N/A	
97	CC-TR	Woman	Н	Biology	Still active	N/A	
98	CC-TR	Woman	Н	Biology	Still active	N/A	
99	CC-TR	Woman	Н	Biology	Still active	N/A	
100	CC-TR	Woman	Н	Biology	Still active	N/A	
101	CC-TR	Man	Н	Biology	Still active	N/A	
102	CC-TR	Woman	В	Math	Withdrew	N/A	
103	CC-TR	Woman	W	Computer Sci.	Withdrew	N/A	
104	CC-TR	Man	Н	Chemistry	Withdrew	N/A	
105	CC-TR	Man	W	Math	Withdrew	N/A	
106	Non-TR	Woman	AS	Environmental Sci.	Graduated	Retained in a STEM major	
107	Non-TR	Woman	AS	Computer Sci.	Graduated	Retained in a STEM major	
108	Non-TR	Woman	AS	Biology	Graduated	Retained in a STEM major	
109	Non-TR	Woman	AS	Computer Sci.; Chemistry	Graduated	Retained in a STEM major	
110		Woman	AS			•	
	Non-TR			Biology	Graduated	Retained in a STEM major	
111	Non-TR	Woman	AS	Biology	Graduated	Retained in a STEM major	
112	Non-TR	Woman	В	Biology	Graduated	Retained in a STEM major	
113	Non-TR	Woman	В	Biology	Graduated	Retained in a STEM major	
114	Non-TR	Woman	<u>B</u>	Biology	Graduated	Retained in a STEM major	
115	Non-TR	Woman	В	Chemistry	Graduated	Retained in a STEM major	
116	Non-TR	Woman	В	Chemistry	Graduated	Retained in a STEM major	
117	Non-TR	Woman	В	Economics	Graduated	Retained in a STEM major	
118	Non-TR	Woman	В	Biology	Graduated	Retained in a STEM major	
119	Non-TR	Woman	В	Computer Sci.	Graduated	Retained in a STEM major	
120	Non-TR	Woman	<u>B</u>	Radiological Sci.	Graduated	Retained in a STEM major	

121	Non-TR	Woman	В	Neuroscience	Graduated	Retained in a STEM major
122	Non-TR	Woman	В	Biology Graduated		Retained in a STEM major
123	Non-TR	Woman	В	Chemistry	Graduated	Retained in a STEM major
124	Non-TR	Woman	В	Psychology BS	Graduated	Retained in a STEM major
125	Non-TR	Woman	Н	Biology	Graduated	Retained in a STEM major
126	Non-TR	Woman	Н	Biology; Computer Sci.	Graduated	Retained in a STEM major
127	Non-TR	Woman	Н	Environment & Ecology Graduated Retained		Retained in a STEM major
128	Non-TR	Woman	Н	Math; Computer Sci.	Graduated	Retained in a STEM major
129	Non-TR	Woman	М	Biology	Graduated	Retained in a STEM major
130	Non-TR	Woman	NA	Chemistry	Graduated	Retained in a STEM major
131	Non-TR	Woman	W	Biology	Graduated	Retained in a STEM major
132	Non-TR	Woman	W	Biology	Graduated	Retained in a STEM major
133	Non-TR	Woman	W	Biology	Graduated	Retained in a STEM major
134	Non-TR	Woman	Н	Chemistry; Physics	Graduated	Retained in a STEM major
135	Non-TR	Man	AS	Biomedical Engineering	Graduated	Retained in a STEM major
136	Non-TR	Man	AS	Chemistry	Graduated	Retained in a STEM major
137	Non-TR	Man	AS	Chemistry	Graduated	Retained in a STEM major
138	Non-TR	Man	AS	Chemistry	Graduated	Retained in a STEM major
139	Non-TR	Man	В	Nutrition	Graduated	Retained in a STEM major
140	Non-TR	Man	В	Biology	Graduated	Retained in a STEM major
141	Non-TR	Man	В	Biology	Graduated	Retained in a STEM major
142	Non-TR	Man	В	Nutrition	Graduated	Retained in a STEM major
143	Non-TR	Man	В	Biology Graduated		Retained in a STEM major
144	Non-TR	Man	Н	Biology		
145	Non-TR	Man	Н	Statistics	9,	
146	Non-TR	Man	W	Biomedical Engineering	Graduated	Retained in a STEM major Retained in a STEM major
147	Non-TR	Man	W	Phys	Graduated	Retained in a STEM major
148	Non-TR	Woman	В	Political Sci.	Graduated	Changd STEM major
149	Non-TR	Woman	Н	Global Studies	Graduated	Changd STEM major (kept STEM minor
150	Non-TR	Woman	W	Business	Graduated	Changd STEM major (kept STEM minor
151	Non-TR	Woman	AS	Biology	Still active	N/A
152	Non-TR	Woman	AS	Biology	Still active	N/A
153	Non-TR	Woman	AS	Biology	Still active	N/A
154	Non-TR	Woman	В	Biology	Still active	N/A
155	Non-TR	Woman	В	Biostats	Still active	N/A
156	Non-TR	Woman	В	Medical Anthropology	Still active	N/A
157	Non-TR	Woman	Н	Biology	Still active	N/A
158	Non-TR	Woman	Н	Biology	Still active	N/A
159	Non-TR	Woman	Н	Neuroscience	Still active	N/A
160	Non-TR	Man	В	Biomedical Engineering	Still active	N/A
161	Non-TR	Man	В	Biology	Still active	N/A
162	Non-TR	Man	H	Biology	Still active	N/A
163	Non-TR	Man	Н	Biology	Still active	N/A

2. SMART program application form

Science and Math Achievement and Resourcefulness Track (SMART) Program

Application Form-SMART

Today's Date:		
Name:	Classification-class year, status (e.g. 2015, junior):	
Email Address:	Proposed Major:	
PID:	SAT Total:	
Date of Birth:	SAT Math:	
Local Address:	Permanent Address:	
Local Phone:	Permanent Phone:	
Please list below all college-level math and science Advanced Placement and/or transfer credit and w		arately) for which you have received
Course Grade Unive	ersity/School Course	Final Course Grade University/School
Please list below all college-level math and scienc credit at UNC-CH. Also, list STEM courses that you		arately) or for which you have received
Course Final Grade	Course Final Grade	Course Final Grade

3. If applicable, please briefly describe how, to the best of your judgement, you will enhance diversity in STEM and in this specific SMART program.

1. What makes you competitive for this opportunity to do research with a faculty mentor?

2. What do you hope to learn from a summer research experience?

On a separate page, please answer the following questions (short answers, no long essays, please):

3. Student peer feedback on chalk talks

This is a feedback form that students fill out anonymously after one of their peers present their research project during the weekly meetings. The presentation is given through a chalk talk and the peers feedback is shared with the student later.

SMART Chalk talk Feedback	Presenter's name
Please answer and provide a short explana	ation
Did you understand the big picture story of th	e research presented by the student?
Did you understand the goals of the project?	
Were the methods explained clearly enough?	
Where there jargon words that required furth clearer?	er explanation to make the talk
In general, how do you think the student pres	ented his/her project?
Was the student able to clearly address questi	ions during or after the talk?
General comments about the talk	

4. Pre-program student assessment form

This assessment is submitted by the SMART participants before the beginning of the summer program.

SMART Program Pre-summer Assessment

Your Name:

- Before you began to work on your SMART application, what did you know about the process of research?
 What are your expectations from the research project?
 Were you involved in courses/projects that required you to read primary scientific literature? If yes, how many papers (approximately) have you read?
 Were you involved in courses/projects that required you to present scientific data through oral or poster presentation?
 Were you involved in courses/projects that required you to write in a scientific manner?
 Do you plan to pursue research during the following semesters?
- 8. Any specific topics that you would like us to discuss during our weekly meetings?
- 9. Any specific activities that you would like to suggest (beyond what's already on the schedule)?

7. Do you plan to pursue research as a career? If not, do you have any career plans at this stage?

5. Post-program student assessment form

what areas (if any) do you feel you developed as a result of the summer experience? The of the goals of the meetings is to create a supportive environment, where students teract with their peers. How important was this experience for you?	
ere is a list of activities we did during the summer. Please note, on a scale of 1-10 (1= ast, 10= significantly), how much you benefited from each activity.	
First paper (chocolate fake paper) discussion.	
Second and Third paper discussions. Writing an abstract on the paper.	
Writing an abstract on your research.	
Chalk talk demonstration (Dr. Shemer).	
Chalk talks.	
General "round table" discussions and updates.	
Any feedback about the graduate school panels and workshops?	
Do you plan to pursue research during the following semesters?	
Do you plan to pursue research as a career? If not, do you have any career plans at this stage?	
Please summarize briefly your experience and suggest any improvements for future summers.	

6. Statistical analysis of the data

	Biology research for credit							
	%	n		Observed	Expected	Obs-Exp	Chi square	P value
BIOL NON-SMART	23	557						
BIOL SMART	73.9	69		51	15.87	35.13	77.76413989	1.16109E-18
BIOL TR NON-SMART	11.5	113						
BIOL TR SMART	75	52		39	5.98	33.02	182.3278261	1.50376E-41
DIOL CC TR NON CAAART	6.0	72						
BIOL CC-TR NON-SMART BIOL CC-TR SMART	6.9 73.7	38		28	2.622	25.378	245.6303905	2.32856E-55
BIOL CC-TR SIVIART	73.7	30		20	2.022	23.376	243.0303303	2.320301-33
	Biology honors							
	%	n		Observed	Expected	Obs-Exp	Chi square	P value
BIOL NON-SMART	7.9	557						
BIOL SMART	29	69		20	5.451	14.549	38.832031	4.61886E-10
DIOL TO NON CMART	0.0	112						
BIOL TR NON-SMART BIOL TR SMART	0.8 30.8	113 52		16	0.416	15.584	583.8006154	5.5895E-129
DIOL IN SWANT	30.8	32		10	0.410	13.364	383.8000134	J.3633L-123
BIOL CC-TR NON-SMART	0	72						
BIOL CC-TR SMART	31.6	38		12	1	11	121	3.82132E-28
	Graduation rates							
	%	n		Observed	Expected	Obs-Exp	Chi square	P value
FY UNC	92.7	16407						
FY SMART	100	45		45	41.715	3.285	0.25868932	0.611022042
UNC FY URM	90	2593						
SMART FY URM	100	28		28	25.2	2.8	0.311111111	0.576999162
SIVIJAN T T OKKI	100			20	25.2	2.0	0.31111111	0.370333102
TR-UNC	85.8	815						
TR-SMART	95.7	92		88	78.936	9.064	1.040793757	0.307636937
CC-TR UNC	82.7	370						
CC-TR UNC	93.9	66		62	54.582	7.418	1.008147814	0.315346975
				-				
	STEM retention rates					<u> </u>		
EVIING	%	n		Observed	Expected	Obs-Exp	Chi square	P value
FY UNC	80.4	5463	=	42	26.10	F 02	0.026240005	0 222252442
FY SMART	93.3	45		42	36.18	5.82	0.936218905	0.333252143
FY UNC URM	75.2	951						
FY SMART URM	92.9	28		26	21.056	4.944	1.160863222	0.281286588
TD LINC	96.0	066						
TR-UNC	86.9	966		07	76 472	10 520	1 440402404	0 220622604
TR-SMART	98.9	88		87	76.472	10.528	1.449403494	0.228623691
CC-TR UNC	84.9	485						
CC-TR SMART	98.4	62		61	52.638	8.362	1.328375774	0.249094375

7. Sample responses from the anonymous student feedback

General

I learned about things that I would not necessarily have expected to learn. In addition to various research methods and the training that came with that, I learned about how to read scientific articles more effectively, and how to be critical of research articles. I learned how to prepare various talks (the chalk talk and the final presentation), how to describe graphs out loud, and how to write abstracts. I feel like I was also able to learn a lot from my peers.

My research experience exceeded my original expectation and I can't be more thankful for the skill, knowledge, and experience I gained in this summer.

From TR student: The whole program was a highlight of my (limited) time here at UNC.

11/10 experience. I have grown a lot this summer and feel as if I like my major 10x more because of the research I did. It really helped me see how my major and courses are applicable to real life situations and how a possible career with it would be.

Transferring credits from a community college makes fitting in a research project difficult. I honestly do not think I could have done research without this program.

Research experience

I think I was a bit naive about research overall, since one of the most important things I learned was just how constant failure was during research.

Critical thinking, analysis, and independence. I tend to look for answers the easy way, such as asking someone directly without trying to look for it myself. However, being in the research forced me to look for my own answers independently (with some help) and I am glad I gained that skill.

This summer was a challenging, yet rewarding summer. I learned that research isn't all smooth sailing, but is actually about growing and learning when faced with different obstacles and challenges.

I think the thing that I first learned was the amount of failure that can happen during research. As a result of the Summer program experience, I am able to handle failures better and engage in critical scientific thinking.

I learned to deal with failure better.

I have learned that in research, challenges and errors are not obstacles, but rather opportunities for growth. Mistakes and unexpected results pave the way for new avenues of exploration leading to the continuous advancement of scientific knowledge

I learned just how important scientific literature was in research. I had assumed that most researchers spent most of their time conducting their own research, and only reading papers to compare experiment outcomes or when an experiment's methods could be improved. After participating in research, it was eye-opening to realize that reading papers was a daily occurrence in research. Always being up to date on the current research in the field, understanding the similar papers done on your specific field of research, and always looking to see if any papers will provide some new insights that can improve your experiment.

Through my experience, I have gained a profound understanding of research and scholarship. First, I learned the importance of literature review as a means to gain knowledge of a specific field, which serves as a foundation for future investigation. Moreover, I have recognized the significance of continuous trial and error, where new insights emerge through constant revision and modification of experimental designs. Furthermore, I have grasped the crucial aspect of research where effective communication functions as a driving force for collaboration and expansion of knowledge. Presenting and sharing findings in a clear and concise manner, seeking constructive feedback from peers are valuable in fostering growth in the scientific community. In addition, I have learned that persistence is one of the most valuable qualities required for successful research. As research can be arduous and repetitive, a solid commitment to the pursuit of knowledge ultimately gives way to meaningful discoveries.

I've learned that research is not always a linear or fluid process. I used to think that encountering obstacles during my research was a bad thing, or that it meant I was doing something horribly wrong. However, I'm now learning that experiencing challenges is proof that I'm making significant advancements in my research.

I realized that there are often setbacks or disappointing results, and while this can be frustrating it helped me learn more about the process of science.

I now know that one research question doesn't always lead to the answer. It may lead to another question.

My reasoning skills. I also developed my problem solving skills and I am able to reflect on what can be wrong.

Yes. This was so eye opening for me and I can't wait to continue this in my senior year

Papers and chalk talks

I had a great experience in the program. I think the paper readings and discussions were extremely impactful. Learning loopholes of papers was very helpful, and is rarely discussed.

I really enjoyed and benefited from discussing and critiquing research papers. I have always thought that a paper being published means that everything in it is valid, and it is extremely valuable to learn how to interpret the quality of a paper. I also benefited greatly from giving a presentation (chalk talk) on my work. It helped me to understand my place in the research and it helped me to realize aspects of my research that I need to learn more about.

My analysis of scientific papers has been significantly improved and now I can confidently read a paper unrelated to my field and get the gist of the research.

I always thought that whatever info that came from a scientific journal must be true, but now I will be more careful reading papers.

The most challenging part was the chalk talk, but it was highly rewarding. Only after it, did I actually know what was happening in my lab and where do I stand. I also realized the importance of my research and the effect it has on the community.

I feel as if my knowledge and skills related to my field developed tremendously as well as my ability to discuss and present my research.

Peer review- so important! Has helped me to develop a skeptical eye and be on the lookout for bad science.

I am very shy when it comes to speaking up in front of any group of people, when I don't know them, so these meetings helped me expand my horizons and get out of my comfort zone.

By giving the chalk talk, I gained an even better understanding of my project.

Group meetings

My peers, while some did have experience in labs, were learning alongside me and I felt like I was able to take their experiences and use them to learn as well. It was also very nice to have a group of people that thought scientifically and talk about the work I was doing.

The meetings were a critical part of the experience. I knew I had a safe space to communicate my thoughts. It felt so comforting to have a group of friends who were going through the same experiences as me.

Listening to others definitely helped me feel better about my own experience.

This was very important to me. I felt as if my group became very close and they were always supportive and helpful.

Group meetings diversified my thinking. I now regularly read biology and chemistry papers. This might not sound too surprising until I tell you that I am a physics major.

I found this environment crucial to my sustainability. There were many times that I felt overwhelmed or stressed, but my group members found a way to relate with me and to help me feel more at ease.

Group meetings: Wonderful. Allowing a free space for us to speak about experiences- good and bad- made me feel comfortable, validated and supported.

Group meetings: this was <u>very</u> important. We were all going through the same experiences, and being able to see that, encouraged me to continue with my project.

Group meetings: Coming in, I did not consider it that important, but looking back, it was a vital part of this experience. Everyone in the SMART program is so supportive and invested in my growth.

Group meeting: I became more social with peers during this summer program than I did all school year.

Sense of belonging and growth

They taught me how I should start thinking like a scientist

My experience was phenomenal. I got to learn so many skills, beyond just lab techniques. I was able to find a small support group that come from my background (transfers).

If I would describe this summer's research experience as one that will be challenging. I was challenged to learn scientific terminology as well as protocols that at the beginning I had no idea existed. However, this dynamic motivated me to keep improving my skills and knowledge. I failed so many times, and deep inside I knew that will happen, but what I wasn't prepared for was the excitement of doing things again with such stamina because this time I knew what when wrong and where I could improve. I gained a lot of confidence and I wouldn't change the hardest weeks for nothing because from them I learned how to be a stronger scientist.

It allowed me to feel more included in the community.

My overall experience was amazing. There wasn't much time to really absorb how much I learned/developed but right now thinking about it, I feel extremely accomplished and know that without this program, I would not be where I am today, not even close.

Group meeting: Their presence helps me feel more comfortable with my research because we are all on the same boat.