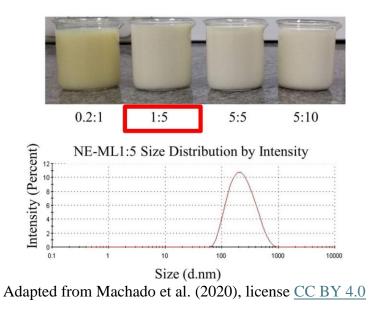


## Supplementary Material

The development and physicochemical characterization of *Linum usitatissimun* oil nanoemulsion loaded with macela extract (*Achyrocline satureioides*) was carried out to optimize its efficacy and stability (Pinheiro Machado et al., 2020). Different formulations were prepared and tested to identify the most efficient composition in terms of physicochemical stability and antimicrobial activity. After analyzing the evaluated parameters, the formulation called NE-ML 1:5 showed the best performance and was selected for the investigation in this manuscript, which aims to help elucidate the mechanism of action of this formulation. The information on the characterization of this formulation is summarized in Supplementary Table 1, which describes the results obtained for each parameter analyzed and highlights the most relevant aspects of the formulation in terms of its stability and antimicrobial efficacy against *S. aureus*.

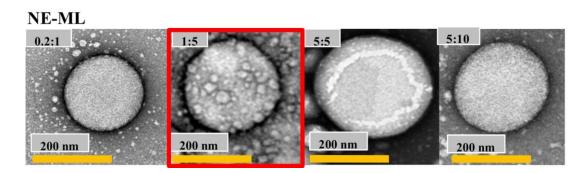
**Supplementary Table 1.** Physicochemical characterization and antimicrobial efficacy of NE-ML 1:5 nanoemulsion formulation.


| Parameter                                                                      | Method                                                               | Description                                                                                                                                                                                                            | Reference               |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Composition of<br>macela-loaded<br>nanoemulsion (NE-<br>ML)                    | High-pressure<br>homogenization<br>(HPH)                             | Tween 80 (1%, w/v)<br>Flaxseed Oil (5%, w/v)<br>Extractive macela solution (20%, v/v) <sup>a</sup><br>Water (100 q.s. to) (mL)                                                                                         | Machado et al.,<br>2020 |
| Chemical<br>characterization of<br>macela extract                              | High-performance<br>liquid chromatography<br>(HPLC)                  | 3-O-methylquercetin $(187.3 \pm 0.1 \ \mu \text{g ml}^{-1})$<br>ACB $(155.4 \pm 11.6 \ \mu \text{g ml}^{-1})$<br>Quercetin $(76.3 \pm 0.1 \ \mu \text{g ml}^{-1})$<br>Luteolin $(30.4 \pm 0.0 \ \mu \text{g ml}^{-1})$ | Machado et al.,<br>2020 |
| Chemical<br>characterization of<br>flaxseed oil                                | Gas chromatography<br>coupled to mass<br>spectrometry<br>(GC/MS)     | Linoleic (LOA) $(30.5\% \pm 0.1)$<br>Alpha-linolenic $(30.7\% \pm 0.1)$<br>Oleic $(25.7\% \pm 0.1)$<br>Palmitic acid $(7.2\%)$<br>Stearic acid $(4.2\%)$                                                               | Machado et al.,<br>2020 |
| Encapsulation<br>efficiency of macela<br>compounds in<br>nanoemulsions         | Ultrafiltration and<br>centrifugation<br>technique                   | > 94%                                                                                                                                                                                                                  | Machado et al.,<br>2020 |
| Visual analysis of<br>NE-ML                                                    | Visual description                                                   | Homogeneous formulation without<br>precipitation or phase separation and<br>yellowish milky appearance                                                                                                                 | Machado et al.,<br>2020 |
| Stability studies<br>over time - storage<br>at room temperature<br>(Day 0)     | Dynamic light<br>scattering (DLS) and<br>Laser Doppler<br>Anemometry | $\begin{array}{c} \mbox{Mean particle size (nm) } 249.9 \pm 2.6 \\ \mbox{Polydispersity index (PdI) } 0.17 \pm 0.0 \\ \mbox{Zeta potential ZP (mV) } -39.9 \pm 2.7 \\ \mbox{pH } 5.1 \pm 0.0 \end{array}$              | Machado et al.,<br>2020 |
| Stability studies<br>over time - storage<br>at room temperature<br>(Day 160)   | Dynamic light<br>scattering (DLS) and<br>Laser Doppler<br>Anemometry | Mean particle size (nm) $240.2 \pm 0.4$<br>Polydispersity index (PdI) $0.18 \pm 0.0$<br>Zeta potential ZP (mV) $-38.2 \pm 1.5$<br>pH $4.6 \pm 0.0$                                                                     | Machado et al.,<br>2020 |
| Analysis of the<br>accelerated physical<br>stability of the<br>nanoformulation | Dispersion analyzer                                                  | Instability index between 0.2–0.6                                                                                                                                                                                      | Machado et al.,<br>2020 |

| Antimicrobial         | Broth microdilution     | MIC <sub>50</sub> 1.2% (v/v)                             | Machado et al.,  |
|-----------------------|-------------------------|----------------------------------------------------------|------------------|
| activity (Planktonic  | method                  | MIC <sub>90</sub> 5% (v/v)                               | 2020             |
| bacteria)             |                         |                                                          |                  |
| Evaluation of         | 96-well microplate      | NE-ML1:5 prevented 100% of biofilm                       | Machado et al.,  |
| biofilm prevetion     |                         | formation at concentrations of 10% and 25%               | 2020             |
|                       |                         | (v/v) for 2 MRSA strains from mastitic bovine            |                  |
|                       |                         | milk. At 25% (v/v) it reduced biofilm mass by            |                  |
|                       |                         | over 64% for ATCC 25923 and 2 MRSA                       |                  |
|                       |                         | strains.                                                 |                  |
| Permeation and        | Franz diffusion cells   | The final permeation of quercetin and 3-O-               | Pinheiro Machado |
| retention of free and |                         | methylquercetin in NE-ML was $50.7 \pm 3.2$ and          | et al., 2022     |
| nano-encapsulated     |                         | $111.2 \pm 0.6 \ \mu g/cm^2$ , respectively, compared to |                  |
| chemical markers of   |                         | the final permeation of free extract of $35.0 \pm$       |                  |
| the macela extract    |                         | 0.6 and $48.9 \pm 1.2 \ \mu g/cm^2$ , respectively       |                  |
| Cell viability of     | MTT method (3-(4,5-     | After exposure to NE-ML (5 and 1.2% v/v),                | Pinheiro Machado |
| mammary epithelial    | dimethylthiazol-2-yl)-  | the percentage of apoptotic cells was reduced            | et al., 2022     |
| cells (MAC-T)         | 2,5-                    | by ±30%                                                  |                  |
|                       | diphenyltetrazolium     |                                                          |                  |
|                       | bromidei)               |                                                          |                  |
| Necrotic or           | Flow cytometry and      | In the $H_2O_2$ assay, the percentage of cells in        | Pinheiro Machado |
| apoptotic cell death  | exposure to $H_2O_2$ (2 | necrosis was reduced by 40% after exposure               | et al., 2022     |
|                       | mM)                     | to NE-ML at 1% (v/v) + 2 mM $H_2O_2$                     |                  |

<sup>a</sup> In the final composition of the macela nanoemulsions (NE-ML), the extract content corresponded to 2.5 mg mL<sup>-1</sup>.

Visually, the formulation was homogeneous, with no precipitation or phase separation, and presented a milky yellow appearance, as shown in Supplementary Figure 1. This figure illustrates the different treatments applied during the development of the nanoformulation, with the NE-ML 1:5 treatment being the one selected for this manuscript due to its superior performance.


**Supplementary Figure 1.** The physical appearance of the nanoemulsion loaded with macela (20%, v/v equivalent to 2.5 mg ml<sup>-1</sup> of extract; NE-ML) and droplet size distribution of NE-ML1:5.



In addition to the visual inspection, the morphological characterization of the macela nanoemulsion was performed using transmission electron microscopy (TEM) (JEOL JEM 1011 TEM), which

allowed a detailed observation of the particle structure. Supplementary Figure 2 shows the TEM micrographs of the different formulations tested, including the NE-ML 1:5 treatment, which was selected for this study. The micrographs showed that the particles in the selected formulation were spherical, which is a key feature contributing to its physicochemical stability and antimicrobial efficacy. This structural analysis supports the findings summarized in Table 1 and reinforces the selection of the NE-ML 1:5 formulation for further investigation in this manuscript.

**Supplementary Figure 2.** Transmission electron micrographs of the nanoemulsion loaded with macela (NE-ML 1:5).



Adapted from Machado et al. (2020), license CC BY 4.0

## References

Machado, G.T.P., Veleirinho, M.B., Honorato, L.A., and Kuhnen, S. (2020). Formulation and evaluation of anti-MRSA nanoemulsion loaded with Achyrocline satureioides: a new sustainable strategy for the bovine mastitis. *Nano Express* 1 (3), 030004. <u>doi.org/10.1088/2632-</u><u>959X/abbcac</u>. License <u>CC BY 4.0</u>

Pinheiro Machado, G.T., Veleirinho, M.B., Ferreira, R.G., Zuglianello, C., Lemos-Senna, E., and Kuhnen, S. (2022). Protection of bovine mammary epithelial cells by a nanoemulsion of the medicinal herb *Achyrocline satureioides* (Lam.) DC and its capacity of permeation through the mammary epithelium. *Journal of Dairy Research* 89 (1), 80–85. doi.org/10.1017/S0022029922000139