Supplemental Table 1: Results of statistical analyses for 9-11 week-old mice. Main effects of two-way ANOVA tests across sexes for each behavioral assay are reported as P-values. P<0.05 was considered to be statistically significant; significant effects are bolded. Dash indicates that a pairwise comparison was unable to be completed; RM, repeated measures. | N | Test | Test Details | Post hoc Multiple
Comparisons | |----------------------------------|--|--|---| | | Elev | vated Balance Beam | • | | N=21
Males=11
Females = 10 | CN Males & Females
Time to Cross (10mm):
RM 2-way ANOVA | day x sex: F(3,57)=0.8883,
P=0.4528
sex: F(1,19)=0.3849, P=0.5424
day: F(2.592,49.24)=0.8088,
P=0.4794 | Šídák's, Male vs.
Female
Day 1: P=0.5957
Day 2: P=0.9999
Day 3: P=0.9954
Day 4: P=0.8159 | | N=20
Males=10
Females = 10 | Tsc1 ^{mut/wt} Males & Females
Time to Cross (10mm):
RM 2-way ANOVA | sex x day: F(3,54)=0.1186,
P=0.9488
sex: F(1,18)=1.784, P=0.1983
day: F(2.078,37.41)=1.630,
P=0.2089 | Šídák's, Male vs.
Female
Day 1: P=0.8600
Day 2: P=0.9072
Day 3: P=0.5291
Day 4: P=0.7677 | | N=24
Males=13
Females = 11 | Tsc1 ^{mut/mut} Males & Females
Time to Cross (10mm):
RM 2-way ANOVA | sex x day: F(3,66)=1.882, P=0.1412
sex: F(1,22)=2.828, P=0.1068
day: F(2.175,47.86)=1.630,
P=0.2089 | Day 4: P=0.7077 Šídák's, Male vs. Female Day 1: P=0.1941 Day 2: P=0.1873 Day 3: P=0.8345 Day 4: P=0.9753 | | N=21
Males=11
Females = 10 | CN Males & Females
Time to Cross (8mm):
RM 2-way ANOVA | sex x day: F(3,57)=0.08166,
P=0.9697
sex: F(1,19)=4.365, P=0.0504
day: F(2.530,48.07)=0.1666,
P=0.8912 | Šídák's, Male vs.
Female
Day 1: P=0.6696
Day 2: P=0.1831
Day 3: P=0.7248
Day 4: P=0.6880 | | N=20
Males=10
Females = 10 | Tsc1 ^{mut/wt} Males & Females
Time to Cross (8mm):
RM 2-way ANOVA | sex x day: F(3,54)=0.028667,
P=0.9940
sex: F(1,18)=1.016, P=0.3269
day: F(2.805,50.49)=1.372,
P=0.2627 | Šídák's, Male vs.
Female
Day 1: P=0.4348
Day 2: P=0.9786
Day 3: P=0.7831
Day 4: P=0.9490 | | N=24
Males=13
Females = 11 | Tsc1 ^{mut/mut} Males & Females
Time to Cross (8mm):
RM 2-way ANOVA | sex x day: F(3,66)=1.073, P=0.3667
sex: F(1,22)=0.04588, P=0.8324
day: F(1.938,42.63)=1.330,
P=0.2747 | Šídák's, Male vs.
Female
Day 1: P=0.9623
Day 2: P=0.9119
Day 3: P=0.9853
Day 4: P=0.9845 | | N=21
Males=11
Females = 10 | CN Males & Females
Foot-slips (10mm):
RM 2-way ANOVA | sex x day: F(3,57)=2.184, P=0.0986
sex: F(1,19)=0.3501, P=0.5610
day: F(2.029,38.55)=0.9767,
P=0.3867 | Šídák's, Male vs.
Female
Day 1: P=0.8113
Day 2: P>0.9999
Day 3: P=0.5205
Day 4: | | N=20
Males=10
Females = 10 | Tsc1 ^{mut/wt} Males & Females
Foot-slips (10mm):
RM 2-way ANOVA | sex x day: F(3,54)=0.8319,
P=0.4822
sex: F(1,18)=1.528, P=0.2323
day: F(2.201,39.62)=0.8319,
P=0.4527 | Šídák's, Male vs.
Female
Day 1: P>0.9999
Day 2: P=0.5205
Day 3:
Day 4: P=0.8142 | |----------------------------------|--|--|---| | N=24
Males=13
Females = 11 | Tsc1 ^{mut/mut} Males & Females
Foot-slips (10mm):
RM 2-way ANOVA | sex x day: F(3,66)=0.3565,
P=0.7846
sex: F(1,22)=0.1423, P=0.7056
day: F(2.591,57)=2.834, P=0.0536 | Šídák's, Male vs.
Female
Day 1: P>0.9999
Day 2: P=0.9607
Day 3: P=0.9998
Day 4: P=0.9061 | | N=21
Males=11
Females = 10 | CN Males & Females
Foot-slips (8mm):
RM 2-way ANOVA | sex x day: F(3,57)=1.182, P=0.3248
sex: F(1,19)=0.3073, P=0.5858
day: F(2.557,48.59)=0.9318,
P=0.4204 | Šídák's, Male vs.
Female
Day 1: P=0.5953
Day 2: P=0.7766
Day 3: P=0.9931
Day 4: P=0.6969 | | N=20
Males=10
Females = 10 | Tsc1 ^{mut/wt} Males & Females
Foot-slips (8mm):
RM 2-way ANOVA | sex x day: F(3,54)=0.9649,
P=0.4160
sex: F(1,18)=1.477, P=0.2400
day: F(2.6,46.8)=1.076, P=0.3621 | Šídák's, Male vs.
Female
Day 1: P=0.9981
Day 2: P=0.9960
Day 3: P=0.1967
Day 4: P=0.9090 | | N=24
Males=13
Females = 11 | Tsc1 ^{mut/mut} Males & Females
Foot-slips (8mm):
RM 2-way ANOVA | sex x day: F(3,66)=1.160, P=0.3318
sex: F(1,22)=0.02369, P=0.8791
day: F(2.539,55.86)=5.157,
P=0.0051 | Šídák's, Male vs.
Female
Day 1: P=0.9985
Day 2: P=0.8292
Day 3: P=0.9969
Day 4: P=0.8586 | | | S | ocial Interaction | | | N=21
Males=11
Females = 10 | CN Males & Females Direct
Contacts (Approach):
RM 2-way ANOVA | sex x preference: F(1,19)=0.08960,
P=0.7679
sex: F(1,19)=0.04783, P=0.8292
preference: F(1,19)=23.86,
P=0.0001 | Šídák's, Empty cup
vs. unfamiliar animal
Male: P=0.0071
Female: P=0.0040 | | N=20
Males=10
Females = 10 | Tsc1 ^{mut/wt} Males & Females
Direct Contacts (Approach):
RM 2-way ANOVA | sex x preference: F(1,18)=1.994,
P=0.1750
sex: F(1,18)=0.1828, P=0.6741
preference: F(1,18)=16.01,
P=0.0008 | Šídák's, Empty cup
vs. unfamiliar animal
Male: P=0.1605
Female: P=0.0025 | | N=24
Males=13
Females = 11 | Tsc1 ^{mut/mut} Males & Females
Direct Contacts (Approach):
RM 2-way ANOVA | sex x preference: F(1,22)=1.639,
P=0.6895
sex: F(1,22)=1.694, P=0.2065
preference: F(1,22)=19.11,
P=0.002 | Šídák's, Empty cup
vs. unfamiliar animal
Male: P=0.1627
Female: P=0.0845 | | N=21
Males=11
Females = 10 | CN Males & Females Direct
Contacts (Novelty):
RM 2-way ANOVA | sex x preference: F(1,19)=3.604,
P=0.0729
sex: F(1,19)=0.009826, P=0.9222
preference: F(1,19)=32.77,
P<0.0001 | Šídák's, Familiar
animal vs. unfamiliar
animal
Male: P<0.0001
Female: P=0.0318 | | |--|---|--|--|--| | N=20
Males=10
Females = 10 | Tsc1 ^{mut/wt} Males & Females
Direct Contacts (Novelty):
RM 2-way ANOVA | sex x preference: F(1,18)=17.61,
P=0.0005
sex: F(1,18)=4.992, P=0.0384
preference: F(1,18)=70.45,
P<0.0001 | Šídák's, Familiar
animal vs. unfamiliar
animal
Male: P<0.0001
Female: P=0.0164 | | | N=24
Males=13
Females = 11 | Tsc1 ^{mut/mut} Males & Females
Direct Contacts (Novelty):
RM 2-way ANOVA | sex x preference: F(1,22)=0.6437,
P=0.4310
sex: F(1,22)=5.774, P=0.0251
preference: F(1,22)=30.97,
P<0.0001 | Šídák's, Familiar
animal vs. unfamiliar
animal
Males: P=0.0002
Females: P=0.0076 | | | N=65 CN=11 Males, 10 Females Tsc1mut/wt = 10 Males, 10 Females Tsc1mut/muut = 13 Males, 11 Females | CN, Tsc1 ^{mut/wt} , & Tsc1 ^{mut/mut} ,
Males & Females
Percentage of Investigation
(Approach): 2-way ANOVA | sex x genotype: F(2,59)=0.3772,
P=0.6874
genotype: F(2,59)=3.220,
P=0.0471
sex: F(1,59)=1.250, P=0.2681 | Šídák's, Genotype
CN vs. Tsc1 ^{mut/wt} :
P=0.6523
CN vs. Tsc1 ^{mut/mut} :
P=0.0424
Tsc1 ^{mut/wt} vs.
Tsc1 ^{mut/mut} : P=0.4173 | | | N=65 CN=11 Males, 10 Females Tsc1 ^{mut/wt} = 10 Males, 10 Females Tsc1 ^{mut/muut} = 13 Males, 11 Females | CN, Tsc1 ^{mut/wt} , & Tsc1 ^{mut/mut} ,
Males & Females
Percentage of Investigation
(Novelty): 2-way ANOVA | sex x genotype: F(2,59)=2.922,
P=0.0617
genotype: F(2,59)=1.239, P=0.2972
sex: F(1,59)=12.18, P=0.0009 | Šídák's, Male vs.
Female
CN: P=0.0055
Tsc1 ^{mut/wt} : P=0.0434
Tsc1 ^{mut/mut} : P=0.9986 | | | Repetitive Behavior | | | | | | N=43
CN=6 Males,
8 Females
Tsc1 ^{mut/wt} = 6
Males, 5
Females
Tsc1 ^{mut/muut} =
9 Males, 9
Females | CN, Tsc1 ^{mut/wt} , & Tsc1 ^{mut/mut} ,
Males & Females
Total Time Grooming:
2-way ANOVA | sex x genotype: F(2,37)=2.414,
P=0.1034
genotype: F(2,37)=0.2444,
P=0.7844
sex: F(1,37)=4.682, P=0.0370 | Šídák's, Male vs.
Female
CN: P=0.0500
Tsc1 ^{mut/wt} : P=0.4180
Tsc1 ^{mut/mut} : P=0.9752 | | # Supplemental Table 2: Results of statistical analyses for 16-24 week-old mice. Main effects of two-way ANOVA tests across sexes for each behavioral assay are reported as P-values. P <0.05 was considered to be statistically significant; significant effects are bolded. Dash indicates that a pairwise comparison was unable to be completed; RM, repeated measures. | N | Test | Test Details | Post hoc Multiple
Comparisons | |-------------------------------|--|--|---| | | El | evated Balance Beam | • | | N=18
Males=10
Females=8 | CN Males & Females Time
to Cross (10mm):
RM 2-way ANOVA | sex x day: F(3,48)=0.6286, P=0.6001
sex: F(1,16)=1.279, P=0.2930
day: F(2.703,43.25)=0.2806,
P=0.6036 | Šídák's, Male vs. Female
Day 1: P=0.7256
Day 2: P= 0.9976
Day 3: P=0.9871
Day 4: P=0.9992 | | N=19
Males=9
Males=10 | Tsc1 ^{mut/mut} Males & Females
Time to Cross (10mm):
RM 2-way ANOVA | sex x day: F(3,51)=0.7325, P=0.5374
sex: F(1,17)=2.595, P=0.12556
day: F(2.896,49.24)=1.746,
P=0.1714 | Šídák's, Male vs. Female
Day 1: P=0.3835
Day 2: P=0.9159
Day 3: P=0.4280
Day 4: P=0.6606 | | N=18
Males=10
Females=8 | CN Males & Females Time
to Cross (8mm):
RM 2-way ANOVA | sex x day: F(3,48)=0.77699,
P=0.5126
sex: F(1,16)=0.2006, P=0.6602
day: F(2.719,43.5)=0.9122,
P=0.4350 | Šídák's, Male vs. Female
Day 1: P=0.9998
Day 2: P>0.9999
Day 3: P=0.6919
Day 4: P=0.9515 | | N=19
Males=9
Males=10 | Tsc1 ^{mut/mut} Males & Females
Time to Cross (8mm):
RM 2-way ANOVA | sex x day: F(3,51)=0.1847, P=0.9063
sex: F(1,17)=1.010, P=0.3290
day: F(2.012,34.21)=2.271,
P=0.1183 | Šídák's, Male vs. Female
Day 1: P=0.9525
Day 2: P=0.8574
Day 3: P=0.6724
Day 4: P=0.8931 | | N=18
Males=10
Females=8 | CN Males & Females
Foot-slips (10mm):
RM 2-way ANOVA | sex x day: F(3,48)=1.183, P=0.3260
sex: F(1,16)=0.1616, P=0.6930
day: F(2.395,38.31)=0.3188,
P=0.7668 | Šídák's, Male vs. Female
Day 1: P=0.8222
Day 2: P=0.8142
Day 3: P=0.8142
Day 4: | | N=19
Males=9
Males=10 | Tsc1 ^{mut/mut} Males & Females
Foot-slips (10mm):
RM 2-way ANOVA | sex x day: F(3,51)=1.904, P=0.1406
sex: F(1,17)=0.04234, P=0.8394
day: F(2.526,42.94)=1.1055,
P=0.3510 | Šídák's, Male vs. Female
Day 1: P=0.9978
Day 2: P=0.9772
Day 3: P=0.8486
Day 4: P=0.8643 | | N=18
Males=10
Females=8 | CN Males & Females
Foot-slips (8mm):
RM 2-way ANOVA | sex x day: F(3,48)=0.8063, P=0.4966
sex: F(1,16)=2.538, P=0.1307
day: F(2.618,41.89)=1.936,
P=0.1454 | Šídák's, Male vs. Female
Day 1: P=0.5121
Day 2: P=0.9507
Day 3: P=0.9081
Day 4: P=0.9998 | | N=19
Males=9
Males=10 | Tsc1 ^{mut/mut} Males & Females
Foot-slips (8mm):
RM 2-way ANOVA | sex x day: F(3,51)=0.9218, P=0.4370
sex: F(1,17)=0.08584, P=0.7731
day: F(2.193,37.29)=1.280,
P=0.2918 | Šídák's, Male vs. Female
Day 1: P=0.9249
Day 2: P=0.9642
Day 3: P=0.9911
Day 4: P=0.9995 | |---|--|--|--| | | | Social Interaction | | | N=14
Males=8
Females=6 | CN Males & Females Direct
Contacts (Approach):
RM 2-way ANOVA | sex x preference: F(1,12)=1.323,
P=0.2725
sex: F(1,12)=2.937, P=0.1123
preference: F(1,12)=35.16,
P<0.0001 | Šídák's, Empty cup vs.
unfamiliar animal
Male: P=0.0003
Female: P=0.0163 | | N=18
Males=9
Males=9 | Tsc1 ^{mut/mut} Males & Females
Direct Contacts (Approach):
RM 2-way ANOVA | sex x preference: F(1,16)=8.096,
P=0.0117
sex: F(1,16)=1.729, P=0.2071
preference: F(1,16)=58.68,
P<0.0001 | Šídák's, Empty cup vs.
unfamiliar animal
Male: P=0.5288
Female: P=0.0025 | | N=14
Males=8
Females=6 | CN Males & Females Direct
Contacts (Novelty):
RM 2-way ANOVA | sex x preference: F(1,12)=0.2264,
P=0.6427
sex: F(1,12)=3.252, P=0.0965
preference: F(1,12)=41.70,
P<0.0001 | Šídák's, Empty cup vs.
unfamiliar animal
Male: P=0.0004
Female: P=0.0038 | | N=18
Males=9
Males=10 | Tsc1 ^{mut/mut} Males & Females
Direct Contacts (Novelty):
RM 2-way ANOVA | sex x preference: F(1,16)=8.096,
P=0.0117
sex: F(1,16)=1.729, P=0.2071
preference: F(1,16)=7.556,
P=0.0143 | Šídák's, Empty cup vs.
unfamiliar animal
Male: P=0.1889
Female: P=0.0942 | | N=32
CN=8 Males, 6
Females
Tsc1 ^{mut/mut} =9
Males, 9
Females | CN & Tsc1 ^{mut/mut} Males & Females Percentage of Investigation (Approach): 2-way ANOVA | sex x genotype: F(1,27)=5.713,
P=0.0241
genotype: F(1,27)=6.065, P=0.0205
sex: F(1,27)=5.848, P=0.0226 | Šídák's, Male vs. Female
CN: P=0.9998
Tsc1 ^{mut/mut} : P=0.0026 | | N=32
CN=8 Males, 6
Females
Tsc1 ^{mut/mut} =9
Males, 9
Females | CN & Tsc1 ^{mut/mut} Males & Females Percentage of Investigation (Novelty): 2-way ANOVA | sex x genotype: F(1,27)=0.4497,
P=0.5082
genotype: F(1,27)=12.92, P=0.0013
sex: F(1,27)=4.472, P=0.0438 | Šídák's, Male vs. Female
CN: P=0.5644
<i>Tsc1</i> ^{mut/mut} : P=0.0917 | #### Supplemental Figure 1: Motor coordination and balance testing of male and female 9–11 week-old $Tsc1^{mut/mut}$ (N=13 males and N=11 females), $Tsc1^{mut/wt}$ (N=10 males and N=10 females), and control (CN, N=11 males and N=10 females) mice were tested on an elevated balance beam 8mm in width. $Tsc1^{mut/mut}$ mice performed significantly (p<0.0001) worse than control animals on across all four testing days, but no difference in the time to cross (panel **A**) or number of hindlimb foot-slips (panel **B**) between sexes within each of the genotypes. Mean \pm SEM values are plotted. # Supplemental Figure 2. 16-24 week-old *Tsc1*^{mut/mut} (N=9 males and N=10 females) and control (N=10 males and N=8 females) mice of both sexes were tested on an elevated balance beam 8mm in width. *Tsc1*^{mut/mut} mice performed significantly (p<0.0001) worse than control animals on across all four testing days, and no difference in the time to cross (panel **A**) or number of hindlimb foot-slips (panel **B**) between sexes was measured for either genotype. Mean ± SEM values are plotted. ### Supplemental Figure 3. Using the Ai14 tdTomato Cre-reporter line (see Methods) tdTomato immunofluorescence was similarly expressed in the Purkinje neuron layer of parasagittal cerebellar sections taken from P16 male (panel **A.**) and P16 female (panel **B.**) *Tsc1*^{flox/flox}; Cre (+) animals. ### Supplemental Figure 4. 9-11 week-old control (*black*, left), *Tsc1*^{mut/wt} (*blue*, center), and *Tsc1*^{mut/mut} (*red*, right) mice of both sexes performed the 3-chamber social approach (**A.**) and social novelty (**B.**) assays for 10 minutes (presented in Figures 4 and 6). The time male and female mice spent in each chamber are plotted for each type of assay and across the three genotypes. Mean ± SEM values are plotted as black bars. Within each genotype for the social approach assay, there were no significant differences across male and female animals for the time spent in each chamber (Student's unpaired t-test). In the Social Novelty assay (panel **B.**), male *Tsc1*^{mut/wt} animals spent significantly (P<.01) more time in the unfamiliar mouse chamber, and significantly (P<.05) less time in the familiar mouse chamber, when compared to female *Tsc1*^{mut/wt} mice (unpaired Student's t-test). Using 3-way ANOVA analyses of time in chamber data (using genotype, chamber, and sex as major factors), we found chamber to be the only significant (P<.0001) major factor for each assay. No significant interactions between factors were measured in the social approach (**A.**) and social novelty assays (**B)**. ### Social Approach (16-24 week-old mice) #### Social Novelty (16-24 week-old mice) ### Supplemental Figure 5. 16-24 week-old control (black) and Tsc1mut/mut (red) mice performed the 3-chamber social approach and social novelty assays (presented in Figures 5 and 6, respectively). The time spent in each chamber during the 10-minute social approach assay (A. B.) and the 10-minute social novelty assay (C. D.) are plotted for each genotype. Mean ± SEM values are plotted as grey bars. Within each genotype, there were no significant differences between male and female animals for the time spent in each chamber during social approach or social novelty testing (Student's unpaired t-test). A 3-way ANOVA was used to assess these data across genotypes, using genotype, chamber, and sex as major factors. For social approach, this analysis revealed Chamber to be the only significant (P< .0001) major factor. A significant (P = .023) interaction was also identified between Chamber and Genotype factors. For social novelty (C. D.), three-way ANOVA analysis revealed Chamber to be the only significant (P<.0001) major factor with no significant interactions.