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Supplementary Materials and Methods 

 

Patient consent 

This patient provided verbal informed consent, in the presence of his next of kin, for 

whole genome sequencing. 

 

Sample acquisition 

Sufficient tissue for whole genome sequencing (WGS) was available from samples 

collected from the primary tumour resection (M1-T); the re-excised recurrent tumour 

(M2-T) after adjuvant radiation therapy; the lung metastases (M3-T) before treatment 

with Sunitinib and one paired blood sample for tumour-normal analysis.  

 

Sample processing and Whole Genome Sequencing (WGS) 

DNA was extracted from tumour samples using the AllPrep DNA mini kit (Qiagen, 

Hilden, Germany) and from one matched whole blood sample using a DNA blood 

mini kit (Qiagen), according to the manufacturers protocol. DNA was quantified by 

Qubit flurometer (Invitrogen, Carlsbad, CA, USA) and DNA integrity examined by 

agarose gel electrophoresis. For all samples, DNA libraries were sequenced on the 

BGI Genomics (Hong Kong) DNA Nanoball Sequencing (DNBseq) platform to 

generate 100bp paired end whole genome sequencing reads.   

 

Sequencing read filtering and sequence alignment  

Lane level raw sequencing reads were filtered for adaptor sequence and 

contamination along with the removal of low quality base pair reads using 

SOAPnuke1 software developed by BGI. SOAPnuke software filter parameters: “-n 
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0.001-| 10 –adaMR 0.25”. If the sequencing read matched 25% or greater of the 

adapter sequence with a maximum of two base pair mismatches allowed, the entire 

read was removed. Sequencing reads with 50% or more bases with a quality score 

less than 10 or were discarded. Also discarded were those reads containing N 

sequences in 0.1% or more of the entire read. Lane level cleaned sequencing reads 

were aligned separately to the human reference genome (hg38/GRCh38) using the 

Burrows-Wheeler Aligner (BWA) mem version 0.7.17. According to the GATK4 best 

practice pipeline (version 4.2.0), read duplicates were marked using Picard 

MarkDuplicates. For each sample, de-duplicated lane level read alignments were 

sorted using samtools (v1.9) and merged using MergeSamFiles. Sample level bam 

files were next processed by base quality score recalibration (BQSR) with the 

following references supplied with the “--known-sites” option: 

Homo_sapiens_assembly38.dbsnp138.vcf.gz, Homo_sapiens_assembly38.known_indels.vcf.gz and 

Mills_and_1000G_gold_standard.indels.hg38.vcf.gz. Prior to somatic variant calling Somalier 

(v.0.2.13) (https://github.com/brentp/somalier) was used to calculate sample 

relatedness from sequencing data to ensure normal-tumour sample pairs came from 

the same individual. 

 

Somatic mutation calling 

Somatic single nucleotide variants (SNVs), insertions and deletions (InDels) were 

called using Strelka (v. 2.9.10)2 and Mutect2 (v.4.2.0)3 respectively from matched 

normal and tumour pairs. In order to improve Strelka’s sensitivity for calling InDels 

>20 nucleotide long, Manta (v.1.6.0) was first used to call structural variants and 

InDels from mapped paired end sequencing reads. Manta was run using default 
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settings except for the inclusion of –callRegions option to restrict variant calling to 

chromosomes 1-22, X, Y, M.  

Bcftools (v.1.12) (http://samtools.github.io/bcftools/bcftools.html) norm function was 

used to left align and normalise InDels called by Manta. This candidate set of InDels 

was then used as input to Strelka using –indelCandidates along with the 

inclusion of the –callRegions option. In order to filter for false positive somatic 

mutation calls such as common variants and mapping artifacts, Mutect2 was run with 

the gnomAD germline population reference and a publicly available panel of normal 

(PON) sample set provided by the Broad Institute and generated from 1000 

Genomes Project samples. FFPE samples are known to contain mutational biases in 

the C>T / G>A  transition. OxoG filter was applied through the read orientation bias 

model with Mutect2 to remove mutations with FFPE strand bias. GATK4 

GetPileupSummaries and CalculateContamination was used with a set number of 

known germline common variants reported in ExAC at a population minor allele 

frequency > 0.05 to calculate cross sample contamination. FilterMutectCalls was run 

using default parameters and passed the output from CalculateContamination (--

contamination-table), read orientation priors (--ob-priors) and stats file 

from Mutect2 (--stats). 

 

Bcftools norm function was used to left align and normalise InDels separately on 

filtered Mutect2 and Strelka variant call sets followed by GATK4 SelectVariants to 

select “PASS” only variants. SnpSift annotate and filter was used to filter out 

common variants in the dbSNP (version 138) database from the left aligned, 

normalised and filtered variant callsets. Filtered Mutect2 and Strelka somatic variant 
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calls were combined into one variant call format (VCF) file using GATK3 (v.3.8.1) 

CombineVariants with -genotypeMergeOptions set to PRIORITIZE and the  

--rod_priority_list set to mutect2, strelka. Decomposition of multiallelic sites 

was performed using vt decompose (https://genome.sph.umich.edu/wiki/Vt). Further 

false positive mutation filtering was applied using the fpfilter function, available to use 

as part of the Varscan mutation calling package. Default settings were used except 

for –min-var-count set to 3 and –min-var-freq 0.01. Variant annotation was 

performed using variant effect predictor (VEP v.96; GRCh38 reference genome). 

The VCF generated by VEP was used as input to the  

Memorial Sloan Kettering cancer centre (MSKCC) developed tool vcf2maf 

(https://github.com/mskcc/vcf2maf) to convert the VCF to maf file format. This maf 

file was used as input to the MSKCC ngs-filters (https://github.com/mskcc/ngs-filters) 

tool to flag and filter low confidence mutations (alternative (ALT) allele Count > 1 in 

the normal sample or < 4 in the tumour sample or tumour sequencing DEPTH <= 10) 

and any mutations flagged as a potential FFPE artifact. Only those annotated filtered 

variants called by both Mutect2 and Strelka i.e., labelled “intersection set” were 

imported into the R statistical programming environment using MAFTools4 for 

downstream somatic mutation analysis. 

 

Estimation of tumour mutational burden 

Tumour mutational burden (TMB) is defined here as the number of nonsynonymous 

somatic mutations per megabase of exome. The nonsynonymous mutation rate per 

Mb was calculated used MAFTools as the total number of coding variants (SNVs, 

indels) divided by the exome total length in megabases (50Mb). 
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Annotation of driver mutations and drug response biomarkers 

An online platform Cancer Genome Interpreter5 (CGI) was utilised for assigning 

oncogenic driver (predicted / known) or passenger mutation status to each gene 

alteration. CGI was also used for identifying which alterations may be targetable in 

meningioma and if they were likely to be a marker of drug response/resistance. A 

detailed description of the CGI implementation is available at 

https://www.cancergenomeinterpreter.org/faq. Briefly, given a list of genomic 

alterations for a specific tumour type, CGI implements machine learning-based 

methods called boostDM and OncodriveMut for in-silico saturation mutagenesis of 

cancer genes to assess the oncogenic potential of mutations in human tissues. 

Oncogenic potential prediction is given from machine learning models trained on 

mutational features of cancer genes such as the functional consequence type and 

positional clustering of the mutation. CGI also cross-references mutations against a 

catalogue of validated oncogenic mutations, compiled from multiple databases 

containing cancer mutation knowledge, including ClinVar, OncoKB and DoCM. 

Furthermore, to assess the relevance of the alterations as biomarkers of drug 

response, CGI performs annotation of inputted genomic alterations using an in-

house curated database called Cancer Biomarkers and two other publicly available 

resources: CIViC and OncoKB. Annotation of biomarker drug response is given 

according to different levels of therapeutic evidence such as clinical evidence 

(already an FDA-recognised biomarker predictive of response to an FDA-approved 

drug in this indication), guidelines (standard of care biomarker of response / 

resistance), compelling clinical and/or biological evidence from early clinical trials, 

case reports or pre-clinical testing. 
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Mutational Signatures 

Somatic point mutations were used as input for mutational signature analysis using 

the signature.tools.lib (version 2.4.1) R package, developed by the Nik Zainal Group, 

which implements the Signal6 framework for mutational signature extraction and 

signature fitting. Single base substitutions were categorised by their trinucleotide 

context to generate a 96-channel mutational, SNV catalogue matrix for each sample. 

Regions of clustered substitutions i.e., kaetegis regions were filtered if present. The 

SignatureFit algorithm was used with bootstrapping to fit COSMIC30 reference 

mutational signatures (v2 - March 2015) to the SNV catalogue matrices using the Fit 

function with the following parameters: 100 bootstraps, method = “KLD”, threshold p-

value < 0.05. Signature exposure values correspond to the median of the 

bootstrapped runs. 

 

Somatic copy number calling 

Allele specific DNA copy number inference using FACETS 

Total and allele-specific copy number states were inferred for all tumour samples 

using FACETS Suite (v 2.0.8) and FACETS (v.0.6.1) 

(https://github.com/mskcc/facets-suite). Tumour and matched normal bam files were 

pre-processed using snp-pileup (v.0.6.1) with parameters –q15 –Q20 –P100 –r25,0. 

A two pass implementation of FACETS using snp pileup file output as input, was 

utilised were a low sensitivity run (cval =100) first infers the purity and log-ratio 

related to diploidy, as per methodology7. A second higher sensitivity run (cval=50) to 

detect focal events, determines the copy number state of each gene. 
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Somatic Structural Variant (SV) Calling 

DELLY28 was used to call structural variants (SVs) (deletions, duplications, 

inversions and translocations) from WGS sequence alignment data (min mapping 

quality 20) from each tumour-normal sample pair. Filtering was applied to DELLY2 

output to select only somatic SVs with a minimum 500bp length, a 20X minimum 

tumour coverage with minimum allele frequency cut off of 0.01. BCFTools was used 

to select “PASS” only SV’s, classified as “PRECISE” with a split read support of 

greater than or equal to 5. AnnotSV (https://github.com/lgmgeo/AnnotSV) was used 

to annotate filtered somatic SVs with the StructuralVariantAnnotation and circlize R 

packages used for circos plot visualisation. 

 

Clonal evolution analysis 

PyClone-VI (v.0.1.1)9 was used to infer the clonal population structure within 

longitudinally collected matched tumour samples. To prepare PyClone-VI compatible 

input files, filtered PASS only mutations from each tumour sample were 

concatenated together use bcftools merge to generate a “master” VCF to guide force 

counting of REF and ALT alleles using GetBaseCountsMultiSample 

(https://github.com/zengzheng123/GetBaseCountsMultiSample) across all sequence 

alignment bam files from the tumour and normal samples. Variant allele frequency 

data was integrated with allele specific copy number calls and tumour purity values 

from FACETS using FACETS Suite based on the McGranahan et al., methodology10 

for estimating the cancer cell fraction (CCF) for each mutation. Copy number and 

purity adjusted mutations with a major copy number >0 were clustered using 

PyClone-VI with the following parameters: maximum of 40 clusters, using the beta 

binomial probability density distribution for allele counts, performing 10 random 
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restarts with 10,000 max iterations. Clonal prevalence was calculated at each time 

point by taking the median cellular prevalence value for each mutation cluster 

(clone). PyClone-VI output was used as input to ClonEvol11 to infer clonal population 

structure, clonal ordering and visualisation. fishplot12 was used to visualise the 

changes in the clonal architecture of the tumours over time.  

 

Supplementary Materials and Methods References 

1. Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for 
integrated quality control and preprocessing of high-throughput sequencing data. 
Gigascience 7, 1-6 (2018). 

2. Saunders, C.T. et al. Strelka: accurate somatic small-variant calling from sequenced 
tumor-normal sample pairs. Bioinformatics 28, 1811-7 (2012). 

3. Benjamin, D. et al. Calling Somatic SNVs and Indels with Mutect2. (Cold Spring 
Harbor Laboratory, 2019). 

4. Mayakonda, A., Lin, D.C., Assenov, Y., Plass, C. & Koeffler, H.P. Maftools: efficient 
and comprehensive analysis of somatic variants in cancer. Genome Res 28, 1747-
1756 (2018). 

5. Tamborero, D. et al. Cancer Genome Interpreter annotates the biological and clinical 
relevance of tumor alterations. Genome Med 10, 25 (2018). 

6. Degasperi, A. et al. Substitution mutational signatures in whole-genome–sequenced 
cancers in the UK population. Science 376(2022). 

7. Bielski, C.M. et al. Widespread Selection for Oncogenic Mutant Allele Imbalance in 
Cancer. Cancer Cell 34, 852-862 e4 (2018). 

8. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and 
split-read analysis. Bioinformatics 28, i333-i339 (2012). 

9. Gillis, S. & Roth, A. PyClone-VI: scalable inference of clonal population structures 
using whole genome data. BMC Bioinformatics 21(2020). 

10. McGranahan, N. et al. Clonal status of actionable driver events and the timing of 
mutational processes in cancer evolution. Sci Transl Med 7, 283ra54 (2015). 

11. Dang, H.X. et al. ClonEvol: clonal ordering and visualization in cancer sequencing. 
Ann Oncol 28, 3076-3082 (2017). 

12. Miller, C.A. et al. Visualizing tumor evolution with the fishplot package for R. BMC 
Genomics 17, 880 (2016). 

 

 

 

 



 10 

 

 

Fig S1. Overview of whole genome sequencing (WGS) data processing workflow. Graphical 
overview of whole genome sequencing data processing workflow for matched blood normal (red box) 
and tumour samples: primary meningioma tumour (T1), primary tumour recurrence (T2), lung 
metastases (T3) (mustard). Each sample was sequenced across different sequencing lanes (L).  
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Fig S2. Somatic mutation data processing and TMB estimates in high grade meningioma 
tumours. (a) Graphical overview of filtering applied to somatic mutation calls from Mutect2 and Strelka 
intersection set. VAF: variant allele frequency (b) Graphical overview of the publicly available data 
sources utilized for generation of a reference list of recurrent gene mutations in high grade, Grade 2 or 
Grade 3 meningioma (MNG) tumour samples (c) Boxplots of tumour mutational burden (TMB) 
(nonsynonymous mutations per megabase (Mb)) estimates from the Nassiri et al., (2021) meningioma 
cohort (n=121 samples). TMB estimates from meningiomas stratified by WHO Grade tumour 
classification, tumour recurrence status and NF2 gene mutations status (MUT=mutated (white), 
WT=wildtype (grey)).  
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Fig S3. Patterns of single nucleotide mutation and BRCA2 mutation overview (a) Barchart of six 
channel mutation context profile counts for all tumour samples (b) Lolliplot of BRCA2 gene mutations.  
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Fig S4. Clonal mutation status and clonal ordering and visualization using ClonEvol. (a) Stacked 
barchart shows the percent (%) clonal (blue) and subclonal (yellow) somatic mutations for each tumour 
sample (left to right) (b) Boxplots (left panel) of variant allele frequency (VAF) values across PyCloneVI 
derived tumour clones (Clone #1 (dark green), #2 (orange), #3 (purple), #4 (pink), #5 (lime green)). 
Middle and right panel shows bell plots and “sphere of cell” plots from Clonevol clonal ordering 
visualization output.  
 


