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[bookmark: _Toc156081257]Data processing
The raw preclinical trial dataset consists of 480 arms (samples) and 29 variables. Before pairing, we dropped two features sample group size and outcome count as they were used to derive the result feature by calculating the outcome count / sample group size, which translates to the survival rate of the animal samples. Similarly, for the raw clinical trial dataset that consists of 158 arms (samples) and 21 variables, we dropped the following 6 features: URL, Title, sample group size, outcome count, intervention:Specific, and intervention:Variation. The intervention:Specific and intervention:Variation features are synonyms commonly used along with their intervention feature value and were used to generate duplicate rows before pairing so that it could be paired to appropriate preclinical trial samples. The sample group size and outcome count features were dropped as they were also used to derive the result feature, similar to what was done in the preclinical trail dataset.
[bookmark: _Ref177313487]Data splitting
While we have made good efforts to collect a wide range of experimental variables, due to the complicated nature of (pre)clinical trials, it would be challenging to completely remove confoundingness in the dataset. To alleviate the potential data leakage during the data splitting, we made sure that the data points from the same (pre)clinical trials were uniquely contained by a data split. Specifically, before assigning categorical labels (see Main Text Equation 3), we applied equal-interval binning () to the numerical translation difference  to apply stratified data splitting to ensure each split contained a similar target distribution. Note that we applied binning before assigning categorical labels to make sure the data splitting was the same across different strictness coefficients  such that the results were comparable. We also made sure that data points with the same preclinical-clinical pair IDs were grouped together so that the same group would be assigned uniquely to one data split. This grouping was done to ensure the training data points that shared the same experimental settings were not leaked to validation and holdout test sets. We used the StratifiedGroupKFold class method from the scikit-learn(Pedregosa et al. 2018) Python library. Ultimately, we used 20% of the data points as the holdout test set and 5-fold cross-validation within the remaining data points for model selection.
Model selection
In this section, we provide more details and rationales regarding the model selection pipeline.
Missing value imputation
Since the missing value ratios in our dataset were insignificant, we used simple imputation(Pedregosa et al. 2018) for its least computational requirement. The simple imputation applied mean imputation for numerical variables and mode imputation for categorical variables.
Oversampling
For oversampling, we used the Synthetic Minority Over-sampling Technique (SMOTE) algorithm(Chawla et al. 2002) from the imbalanced-learn(Lemaître, Nogueira, and Aridas 2017) Python library. This algorithm augments the dataset by synthesizing data points with minority labels by considering their nearest neighbors so that a more balanced dataset will train the classifier. In our pipeline, we considered two choices for the oversampling: With and without SMOTE. We found that SMOTE greatly benefitted the classifiers when the translation success window was stricter (i.e., smaller ), resulting in fewer positive samples.
Classification
To have a wide range of model selection coverage, we considered three popular archetypes of classifiers for tabular data: Random forest(Breiman 2001) for ensemble learning, AdaBoost(Freund and Schapire 1997) for boosting, and multilayer perceptron(Hinton 1989) for neural network method. All these classifiers were able to handle non-linearity in the dataset and were versatile to fit a given data distribution.
Hyperparameter tuning
For each model (defined by the combination of preprocessing steps and a classifier), we performed a 5-fold grid search to search for the best hyperparameter set. The 5-fold data splits (See Supplementary Information Section 1.2) were maintained across all models for comparable results. The best model was chosen based on the highest average 5-fold F1 score, which was further used to evaluate against the holdout test set. See Supplementary Table 3 for the grid search space for each classifier.
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Supplementary Figure 1. Number of positives (translation success) and negatives (translation failure) of the whole dataset using different multipliers of standard deviation for thresholds. Note that we use  as the benchmark dataset.
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Supplementary Figure 2. The t-SNE plot of the A2H dataset with . The first cluster shows a different C. difficile administration, and the second cluster shows different preclinical drug dosage regimens.
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[bookmark: _Toc66802553]Supplementary Figure 3. 
The model selection performance of each classifier for thresholds  with different , where  is the different between clinical recovery and preclinical survival rates, and  is the standard deviation of . The baseline model is a dummy classifier, which always predicts positive.
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Supplementary Figure 4. The sequential feature selection performance of the best model for thresholds  with different , where  is the different between clinical recovery and preclinical survival rates, and  is the standard deviation of . The optimal number of features K was found based on the parsimonious strategy defined in the Mlxtend library(Raschka 2018).
[image: ]Supplementary Figure 5. The SHAP results of the best model for thresholds  with different , where  is the different between clinical recovery and preclinical survival rates, and  is the standard deviation of . The feature uses the original name fed into the model, where the ‘ohe’ stands for one-hot encoding, and the last term after the underline indicates that the original feature value if the encoded feature is 1. Each point represents a sample, where the corresponding feature value is color-coded. The magnitude of the SHAP value of a sample indicates how impactful that feature was to the model’s prediction for that sample.
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Supplementary Table 1. The 5-fold cross-validation performance of the best model for thresholds  with different , where  is the different between clinical recovery and preclinical survival rates, and  is the standard deviation of . Feature scaling is not shown because it does not affect the random forest prediction.
	

	Over-sampling
	Classifier
	Hyperparameters
	Mean F1

	0.0625
	SMOTE
	Random Forest
	{'cls__criterion': 'entropy', 'cls__max_depth': 10, 
'cls__max_features': 'log2', 'cls__n_estimators': 100}
	0.20

	0.125
	SMOTE
	Random Forest
	{'cls__criterion': 'gini', 'cls__max_depth': 14, 
'cls__max_features': 'log2', 'cls__n_estimators': 100}
	0.26

	0.25
	SMOTE
	Random Forest
	{'cls__criterion': 'gini', 'cls__max_depth': 14, 
'cls__max_features': 'log2', 'cls__n_estimators': 100}
	0.45

	0.5
	SMOTE
	Random Forest
	{'cls__criterion': 'entropy', 'cls__max_depth': 14, 
'cls__max_features': 'log2', 'cls__n_estimators': 100}
	0.72

	1.0
	None
	Random Forest
	{'cls__criterion': 'entropy', 'cls__max_depth': 14, 
'cls__max_features': 'log2', 'cls__n_estimators': 100}
	0.90

	2.0
	None
	Random Forest
	{'cls__criterion': 'entropy', 'cls__max_depth': 14, 
'cls__max_features': 'log2', 'cls__n_estimators': 100}
	0.98



Supplementary Table 2. The holdout testing confusion matrices of the best model after sequential feature selection for thresholds  with different , where  is the different between clinical recovery and preclinical survival rates, and  is the standard deviation of .
	
	TP
	FN
	FP
	TN
	Accuracy
	Precision
	Recall
	F1

	0.0625
	16
	43
	74
	965
	0.89
	0.18
	0.27
	0.21

	0.125
	49
	35
	135
	879
	0.85
	0.27
	0.58
	0.37

	0.25
	68
	113
	106
	811
	0.80
	0.39
	0.38
	0.38

	0.5
	298
	132
	131
	537
	0.76
	0.69
	0.69
	0.69

	1.0
	709
	43
	87
	259
	0.88
	0.89
	0.94
	0.91

	2.0
	1026
	3
	69
	0
	0.93
	0.94
	1.00
	0.97



[bookmark: _Ref177313800][bookmark: _Toc156081260]Supplementary Table 3. Grid search space for hyperparameter tuning for each classifier. The grid search was implemented using the scikit-learn Python library. The parameters not mentioned for the classifiers implied the usage of the default values.
	Classifier
	Parameter Name
	Parameter Space

	Random Forest
	# Estimators
	100, 200

	
	Criterion
	‘gini’, ‘entropy’

	
	Max Depth
	8, 10, 12, 14

	AdaBoost
	# Estimators
	100, 200, 400

	
	Learning Rate
	0.1, 0.5, 1.0

	
	Algorithm
	‘SAMME.R’

	Multilayer Perceptron
	Hidden Layer Sizes
	(100,), (100, 100), (100, 100, 100)

	
	Learning Rate
	‘adaptive’

	
	Learning Rate Init
	1e-5, 1e-4, 1e-3

	
	Max Iter
	1000

	
	# Iter No Change
	5
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