Online Supplement to

"From descriptive indices of intransitivity to quantitative assessments: A commentary on Kalenscher et al. 2010."

Nicholas Brown, Clintin P. Davis-Stober, Michel Regenwetter

Random preference model of lexicographic semiorders (RPLS):

Let \mathcal{LSO} be the (finite) collection of lexicographic semiorders, let P_{\succ} denote the probability of $\succ \in \mathcal{LSO}$. The binary choice probability, p(x,y) that a decision maker chooses x when offered the choice between x and y is

$$p(x,y) = \sum_{\substack{\text{preference states } \succ \in \mathcal{LSO} \\ \text{in which } x \succ y}} P_{\succ} + \frac{1}{2} \sum_{\substack{\text{preference states } \succ \in \mathcal{LSO} \\ \text{in which } x \not\succ y \text{ and } y \not\succ x}} P_{\succ}. \tag{1}$$

Lexicographic semiorder error model (LSE):

Let $\succ \in \mathcal{LSO}$ be the (unknown) fixed lexicographic semiorder. The binary choice probability, p(x,y) that a decision maker chooses x when offered the choice between x and y is

$$p(x,y) \begin{cases} \in \left[\frac{1}{2}, 1\right] & \text{if} & x \succ y, \\ \in \left[\frac{1}{4}, \frac{3}{4}\right] & \text{if} & x \not\succ y \text{ and } y \not\succ x, \\ \in \left[0, \frac{1}{2}\right] & \text{if} & y \succ x. \end{cases}$$
 (2)

The LSE model forms a complicated non-disjoint union of convex polytopes. While computing its Bayes factor is not computationally expensive, computing a frequentist p-value would require very extensive computation, hence we omit it.

Table 1 provides the frequentist p-values for the random preference model of transitivity (RPT), weak stochastic transitivity (WST), and the random preference model of lexicographic semiorders (RPLS).

Table 1: Reanalysis of Kalenscher et al.'s data. For each of 30 participants, we report the Kalenscher et al. degree of intransitivity score (K. Index) and p-values for goodness-of-fit tests of RPT, WST and RPLS. We boldface K. Index values (> 0.3) that fail to support transitivity. We italicize p-values less than .05, indicating lack of fit for that model. Entries with a " \checkmark " correspond to choice data that perfectly satisfies the constraints of that model, hence a perfect fit.

- D	T7 T 1	DDE	TITOTE .	DDI C
Participant	K. Index	RPT	WST	RPLS
1	.21	✓	✓	.41
2	.36	<.01	.03	<.01
3	.605	<.01	<.01	.43
4	.065	0.12	\checkmark	.22
5	.30	<.01	<.01	.05
6	.36	.81	.48	<.01
7	.31	.02	.45	.03
8	.005	\checkmark	\checkmark	.99
9	.26	\checkmark	.56	.62
10	.41	.27	.20	<.01
11	.26	.22	\checkmark	.01
12	.15	\checkmark	\checkmark	.32
13	.43	<.01	< 0.01	.05
14	.050	.29	\checkmark	.39
15	.33	<.01	<.01	.05
16	.37	<.01	<.01	.02
17	.42	.55	.72	<.01
18	.050	.95	\checkmark	.69
19	.39	.30	.44	<.01
20	.39	.22	.36	.03
21	.43	.46	.48	<.01
22	.36	<.01	<.01	.99
23	.20	<.01	.66	<.01
24	.42	\checkmark	.69	.02
25	.40	.46	.05	.17
26	.29	\checkmark	\checkmark	.03
27	.35	\checkmark	\checkmark	<.01
28	.33	.73	.44	.04
29	.25	.07	\checkmark	<.01
30	.0067	\checkmark	\checkmark	.69